Automated IDEF3 and DEF4 |1

Systems Design
Specification Document

N T '
. Y B - [i PR S 1. e S
Yoo R SRR U ETRE IR B SR AR S A SOV |
ST N Y S S 1 DAY ag
. , RS IR PO Y S LA SR E LIS VE SR ¢ uncl.. o
LT : o [URINER B S A Y ST SRRV O

Patricia Griffith Friel
Thomas M. Blinn

Knowledge Based Systems, Inc.

November 20, 1989 - December 19, 1989

Cooperative Agreement NCC 9-16
Research Activity No. IM.15

NASA Johnson Space Center

information Systems Directorate
Information Technology Division

e __0O

1
E
Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T-E-C-H-N-1-C-A-L R-E-P-O-R-T

Automated IDEF3 and IDEF4
Systems Design
Specification Document

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. Patricia Griffith Friel and Thomas M. Blinn
of Knowledge Based Systems, Inc. Dr. Peter C. Bishop, Director of the Space Business
Research Center, UHCL, served as RICIS research coordinator.

Funding has been provided by the NASA Information Systems Directorate,
NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA Johnson
Space Center and the University of Houston-Clear Lake. The NASA technical monitor
for this activity was Robert T. Savely, of the Software Technology Branch, Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

Automated IDEF3 and IDEF4
Systems Design Specifications
Document

An Interim Technical Report

Developed By: Knowledge Based Systems, Inc.
2746 Longmire Drive
College Station, TX 77845-5424
(409) 696-7979

Principal Investigators:
Dr. Patricia Griffith Friel
Thomas M. Blinn

Developed For: Software Technology Branch
NASA Johnson Space Center
Houston, TX 77058

Under Subcontract to: RICIS Program

University of Houston - Clear Lake
Houston, Texas 77058-1096

Subcontract Number 055:
Cooperative Agreement Number: NCC 9-16

November 20, 1989 - December 19, 1989

Table of Contents

1.0 INEFOAUCHION........ooiieeiecieiie it s e 1
2.0 Philosophy of Operation.............cccocoviiiiniiniiiiiii s 3
3.0 Functional SuUmMMAaTry ... 8
3.1 IDEF3 Functional OPEration ... 8
3.2 IDEF4 Functional Operation ..., 10
4.0 Automated IDEF3 and IDEF4 Tool Design......... 12
4.1 IDEF3 Design COMPONENLS.....c.ccuvuirimimminimesesnersstisnnesnssssssessensinssusassasees 12
4.1.1 IDEF3 Data STUCHUIES. ... cccereiviiiirirariesrreessestessssiesseasessesesenns 12
4.1.2 IDEF3 User Interface and Constraint Enforcement........ 22
4.2 IDEF4 Design COMPONENLS..........ccomvrrrriiminerimresssiiinesssnenssesissresssasssasens 36
4.2.1 IDEF4 Data StruCtUIES.ccecuiiririinieeirir e ssnissinsessaseses e 37
4.2.2 IDEF4 User Interface and Constraint Enforcement........ 45
5.0 CONCIUSION ..ot st s s s s 80

List of Figures

Figure 1. IDEF3 Functional MatriX........cocoeimmimmimmiiic e 9
Figure 2. IDEF4 Functional MatriX......cooeiiiiiiiiimmiii e 11
Figure 3. IDEF3 Mixin Classes Type Diagram.......coooinieiieninininneen: 12
Figure 4. Process Flow Objects Type Diagram.....ccmmn 14
Figure 5. Object State Objects Type Diagram......mine. 17
Figure 6. IDEF3 Organization Objects Class Inheritance
DIAZTAM ..eocvceeeiree et s bbbt st s 18
Figure 7. Basic IDEF3 Objects Class Inheritance Diagram.................... 20
Figure 8. Object State Transition Objects Class Inheritance
DIAZTAM ot s ss b s s 21
Figure 9. User/IDEF3 Tool Interaction SCENATIO e eeeeririerrreeeeneetnrrranesnaanes 23
Figure 10. Decomposition of Formulate Process Flow
DESCTIPHON cooereeriiscree s s s 24
Figure 11. Decomposition of Create DeCcOMPOSIION....ueirrnrsesermesssiaeanns 25
Figure 12. Decomposition of Edit Process Descripion.......cs 26
Figure 13. Decomposition of Process UOB Commandoceiiiinne: 27
Figure 14. Decomposition of Process Link Commandccoceeveerceenivennnns 28
Figure 15. Decomposition of Process Junction Command...........coccccevnene 28
Figure 16. Decomposition of Process Referent Command.......cceeee. 29
Figure 17. Decomposition of Process Elaboration Command 30
Figure 18. Decomposition of Summarize Object State
TTANSTEIOM cuvieieieeeireeeeicsnetereeseaseeesessrsbes s s s ss s s cssasb s e et s s sesesa s 30
Figure 19. Decomposition of Process Object State Command............ 31
Figure 20. Decomposition of Process Transition Arc Command........... 32
Figure 21. Decomposition of Process Process Description
Diagram COmMANccccueririremiennnmseeeenenissisnses st 32
Figure 22. IDEF3 Screen #1 - Process Flow Diagram ... 33
Figure 23. IDEF3 Screen #2 - UOB Decomposition Browser.........c...... 34
Figure 24. IDEF3 Screen #3 - Object State BIOWSETccoocviiimiissisenen 34
Figure 25. IDEF3 Screen #4 - Object State Transition Diagram.......... 35
Figure 26a. IDEF3 Screen #5a - Edit Pop-up Window ... 35
Figure 26b. IDEF3 Screen #5b - Text Edit Pop-up Window...........c..... 36
Figure 27. IDEF3 Screen #6 - Pick From List Pop-up Window............. 36
Figure 28. IDEF4 Mixin Objects Type Diagram......inin 37
Figure 29. IDEF4 Objects Type Diagram ... 39
Figure 30. IDEF4 Basic Object Class Inheritance Diagram l............ 42
Figure 31. IDEF4 Basic Object Class Inheritance Diagram 2............ 43
Figure 32. IDEF4 Diagram Objects Class Inheritance Diagram............. 44
Figure 33. Design/Maintain OO System with IDEF4 Scenario.......c........ 46

11

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

34,
35.
36.
37.
38.
39.
40.
41,
42,
43.
44.
45,
46.
47,
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.

Decomposition of Develop IDEF4 Design
REPTESENTATION vttt et et
Decomposition of Process Class Diagram Command............
Decomposition of Execute Create Class Command................
Decomposition of Execute Delete Class Command................
Decomposition of Execute Rename Class Command.............
Decomposition of Execute Copy Class Command.......cccc...e
Decomposition of Execute Inheritance Command.............
Decomposition of Execute Class Invariance
COMMANG..eitieirieiiieiececeer e et sasret b enabatsssass st sastsa s s sseee st
Decomposition of Edit Class Invariance Data Sheet............
Decomposition of Execute Feature Command...........coeeeeen.
Decomposition of Execute Method Browser
COMMANT ..ottt eer et st st b s s s s e ss s
Decomposition of Execute Create Method Set
COMMAN ittt sres st se st st arssss st s b eusa e nas st
Decomposition of Add Class/Routine Pairs to Method
Set 53

Decomposition of Execute Edit Method Set
COMMANG..oiniiiiiieirerereee et st st se s e st is
Decomposition of Execute Copy Method Set
COMMANG ..ottt ee st s sesensst s se st sasabs s st sns s
Decomposition of Execute Delete Method Set
COMMANG .ceeieirieirirererevctieeeeea e esree st sssnesesarsasesesese st o susasasasansnasssasases
Decomposition of Process Contract Data Sheet
COMMANd ...ttt s s s s
Decomposition of Execute Feature Browser
COMMAN. ittt bss e st sn s s s
Decomposition of Execute Create Feature Command
Decomposition of Specify New Feature...........cccooniiiiiiniiincnnns
Decomposition of Execute Delete Feature Command...........
Decomposition of Execute Copy Feature Command...........
Decomposition of Execute Edit Feature Command.............
Decomposition of Execute Class Inheritance Diagram
COMMANG ..ot sesesee et s srs b e s s s s
Decomposition of Execute Create Inheritance
Diagram COmMMAnccoccoriiiinnieenieninseesenss s
Decomposition of Add Classes to Inheritance
DIBZTAM .ottt st s st
Decomposition of Execute Copy Inheritance Diagram
COMMANG..oeirieiceciieeeeereteereee st esss s steasussnnsae s e s ansas s
Decomposition of Execute Edit Inheritance Diagram
COMMANd ..ot sr s st s sa s s s

11

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure

62.

63.

64.
65.

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

78.
79.

80.
81.

82.
83.
84.
85.

86.

Decomposition of Execute Create Inheritance Link
COMMANG...ootieieiieee ettt st st cas
Decomposition of Execute Delete Inheritance Link
COMMEANG ...ttt et b s
Decomposition of Execute Type Diagram Command............
Decomposition of Execute Create Type Diagram
Command......cconeenne ettt e e st s s
Decomposition of Add Classes to Type Diagram
COMMAN..cniriiiiirerereeecieeeeee ettt sr s se s snessr s ensas s e s se
Decomposition of Execute Edit Type Diagram
COMMAN...ririeiiieecerereet et et

Decomposition of Execute Copy Type Diagram

COMMANd....oreeieirieeecere e et sas b s
Decomposition of Execute Type Link Command.................
Decomposition of Specify New Type LinK.......inn.
Decomposition of Edit Type Link.........ccccooiiiniinniii.
Decomposition of Execute Method Taxonomy

Diagram Command..........c..ccoveeiruiinirininreensrse e

Decomposition of Execute Create Method Taxonomy
COMMANG...oiiiireririiceeereerrreessree st srecrerss st e bbb sree st s srasn s en s
Decomposition of Add Method Sets to Method Set
TaAXOMOMY ottt erer bbbttt sn s bbb
Decomposition of Execute Copy Method Taxonomy
COMMANd ...ttt st st st sa s
Decomposition of Execute Edit Method Taxonomy
COMMANG ..ottt b s e e s s
Decomposition of Execute Method Set Link
COMMANd ..ottt s et se et s b e
Decomposition of Execute Client Diagram Command.........
Decomposition of Execute Create Client Diagram
COMMANd...oniiirerieeeee ettt et s s b s
Decomposition of Add Suppliers to Client Diagram............
Decomposition of Add Clients to Client Diagram
COMMANd...urrirerereeeeeeeiieere ettt se st s s b s
Decomposition of Execute Copy Client Diagram

Decomposition of Execute Add Suppliers Command..........
Decomposition of Execute Add Clients Command.................
Decomposition of Execute Remove Subordinating
Link Command ...t
Decomposition of Execute Protocol Diagram
COMMANd.....icccccee et er s st srcusa e s

1v

Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

87.
88.

89.
90.
91.
92.

93.
94.
95.
96.
97.
98.
99.
100

Decomposition of Execute Create Protocol Diagram

COMMANG ...ttt st s s b s e s
Decomposition of Execute Edit Protocol Diagram

COMMANG oottt rere e et es st st s sa s sb s s
Decomposition of Execute Copy Protocol Command............
IDEF4 Screen 1 - Class Inheritance Diagram...............
IDEF4 Screen 2 - Type Diagram.....iin
IDEF4 Screen 3 - Method Taxonomy Diagram

SCTEEIM oeeeeeireeecteterese e te e sr st saes et aeesres b ss s s s st s b ascb bbb e s srsa s s st en et s
IDEF4 Screen 4 - Client Diagram........ccccevieeiiiinnnnnnn.
IDEF4 Screen 5 - Protocol Diagram........ccooveeviiiinnniiinanennnn
IDEF4 Screen 6 - Class Browser ...
IDEF4 Screen 7 - Method Set Browser.......inen
IDEF4 Screen 8 - Feature Browser.......ccccoivieriiiiiiiiniinniiiiiiniinnen
IDEF4 Screen 9 - Pick From List Pop-up Window
IDEF4 Screen 10 - Input/Edit Pop-up Window ...
. IDEF4 Screen 11 - Generic Text Edit Window........ccccc..o...

1.0 Introduction

This document provides the initial design specification for the IDEF3
and IDEF4 systems that will provide automated support for IDEF3
and IDEF4 modeling. The IDEF3 method is a scenario-driven process
flow description capture method intended to capture the knowledge
about how a particular system works. The IDEF3 method provides
modes to represent both (1) Process Flow Descriptions to capture the
relationships between actions within the context of a specific
scenario and (2) Object State Transition to capture the description of
the allowable states and conditions for transition between those
states of an object in the domain. The automated IDEF3 tool will
provide support for both of these modes. The IDEF4 method is a
graphically oriented methodology for the design of object oriented
software systems.

Section 2.0 describes the philosophy of operation that was adopted
for the design of these tools. It describes the general characteristics
that the tool should have to provide effective support for these two
methodologies.

Section 3.0 presents a mapping between the conceptual components
of the two tools and the functional requirements specified in the
functional requirements document, “IDEF3 and IDEF4 Automation
System Requirements Document and System Environment Models.
Each component of the two tools provide support for only a subset of
the functional requirements. This section will indicate what
functionality is provided by each component.

Finally, in Section 4.0, the detailed designs of the two tools are
presented. Interestingly, these designs are presented using both
IDEF3 and IDEF4. IDEF4 is used to define the various objects that
will exist within the two tools while IDEF3 process descriptions
define the procedures that would be performed (by the user and by
the automated system in support of the user) to create IDEF3
descriptions and IDEF4 designs using the two tools. These process
descriptions define the interaction between the user and the tools.
Section 4.1 presents the design of the IDEF3 tool, including:

(1) IDEF4 Type Diagrams defining the basic data
structures (classes) of the automated IDEF3 tool as
well as the valid types that features of these classes
may take. These classes would include the basic

Introduction Knowledge Based Systems, Inc.

o

IDEF3 objects (UOBs, Elaborations, etc...) as well as the
organizational structures (Scenarios, Decompositions,
etc...).

(2) IDEF4 Class Inheritance Diagrams to indicate the
relationships between the classes defined for the
IDEF3 tool.

(3) IDEF3 Process Descriptions to describe the
procedures that the user and tool would perform to
create a valid IDEF3 process description.

Section 4.2 presents the design of the IDEF4 tool, including:

(1) IDEF4 Type Diagrams, defining the basic data
structures (classes) of the automated IDEF4 tool as
well as the valid types that features of these classes
may take. These classes would include the basic
IDEF4 objects (Class, Feature, Method Set, etc...) as
well as the organization structures (Diagrams).

(2) IDEF4 Class Inheritance Diagrams to indicate the
relationships between the classes defined for the
IDEF4 tool.

(3) IDEF3 Process Descriptions to describe the

procedures that the user and tool would perform to
create a valid IDEF4 system design.

Introduction Knowledge Based Systems, Inc.

2.0 Philosophy of Operation

One of the primary mechanisms used for descriptions of the world 1is
relating a story in terms of an ordered sequence of events or
activities. The original IDEFs were developed for the purpose of
enhancing communication among people who needed to decide how
their existing systems were to be integrated. [DEF0 was designed to
allow a graceful expansion of the description of a systems’ functions
through the process of function decomposition and categorization of
the relations between functions (i.e., in terms of the Input, Output,
Control, and Mechanism classification). IDEF1 was designed to allow
the description of the information that an organization deems
important to manage in order to accomplish its objectives. The third
IDEF (IDEF2) was originally intended as a user interface modeling
method. However, since the ICAM Program needed a simulation
modeling tool, the resulting IDEF2 was a method for representing the
time varying behavior of resources in a manufacturing system,
providing a framework for specification of math model based
simulations. It was the intent of the methodology program within
ICAM to rectify this situation but limitation of funding did not allow
this to happen. As a result, the lack of a method which would
support the structuring of descriptions of the user view of a system
has been a major shortcoming of the IDEF system. The basic problem
from a methodology point of view is the need to distinguish between
a description of what a system (existing or proposed) is supposed to
do and a representative simulation model that will predict what a
system will do. The latter was the focus of IDEF2, the former is the
focus of IDEF3.

The development of IDEF4 came from the recognition that the
modularity, maintainability and code reusability that results from
the object oriented programming paradigm can be realized 1in
traditional data processing applications. The proven ability of the
object oriented programming paradigm to support data level
integration in large complex distributed systems is also a major
factor in the widespread interest in this technology from the
traditional data processing community. The object oriented
programming paradigm provides the developer with an abstract
view of his program as composed of a set of state maintaining objects
which define the behavior of the program by the protocol of their
interactions. An object consists of a set of local state defining
attributes and a set of methods (procedures) that define the behavior
of that particular object and its relationship to the other objects that

Philosophy of Operation Knowledge Based Systems, Inc.

make up the system. IDEF4 was developed as a design tool for
software designers who use object-oriented languages such as the
Common LISP Object System, Flavors, C++, SmallTalk, Objective C and
others. Since effective usage of the object-oriented paradigm
requires a different thought process than used with conventional
procedural or database languages, standard methodologies such as
structure charts, data flow diagrams, and traditional data design
models (hierarchical, relational, and network) are not sufficient.
IDEF4 seeks to provide the necessary facilities to support the object-
oriented design decision making process.

A logical step after the development of a methodology is the
automation of that methodology. As with other processes,
automating IDEF3 and IDEF4 should reduce the turnaround time
required to produce the descriptions and designs as well as increase
the productivity of the domain experts. But, while automation
addresses the needs of the domain experts, initial prototyping can
serve other purposes. In this light, the prototype IDEF3 and IDEF4
systems will attempt to address several other areas.

First of all, the prototype IDEF3 and IDEF4 systems will demonstrate
the viability of the two methodologies. Since IDEF3 and IDEF4 are
very young methodologies, the prototype tools will serve as a
platform for demonstrating the concepts and intentions of the
methodologies. Additionally, the prototypes will showcase new
technology and demonstrate the effect the technology can have on
automated tools. Perhaps the most significant technology to be
incorporated in the prototypes will be an object oriented database
system. The object oriented database technology is still evolving and
very few commercial products exist. By using an object oriented
system, the prototypes will demonstrate the importance of this new
technology. '

While the methodologies and the technology used to develop the
prototypes are important, a more basic need to be satisfied by the
prototype development is the demonstration of the basic
functionality required to automate the methodology. In doing this, it
is possible to identify those components of the methodologies that
prove most difficult to automate. With this knowledge, a more
accurate development strategy can be produced when attempting to
build the full scale automated tools. Potential areas where additional
work will be required after the initial prototyping deal with the
integration issues between various modeling methodologies and the

Philosophy of Operation Knowledge Based Systems, Inc.

database issues revolving around the object oriented database
architecture.

In addition to these functional goals, the IDEF3 and IDEF4 prototypes
should display the following operational characteristics:

Ease of Data Entry
The system should be simple to use. The tool would not be
very useful if the operation of the tool made the
description and design processes more complicated than it
would be without an automated tool.

No Redundant Data Entry
The system should not require the user to input
information more that once. Once a datum exists within
the system, the datum should be accessible for use at any
time.

Integratability
The tools should have hooks for integration with other
tools (particularly IDEF@ and IDEF1 tools) and provide
means of using process descriptions and designs for
automated analysis (i.e., logical consistency, qualitative
simulation and code generation).

Presentation/Graphic Based Operation

The most obvious characteristic will be the systems user
interface. The design of the two tools has proceeded with
the assumption that the wuser interface will be a
presentation/graphic based operation. What this means is
that the interface will be frame (window) based with
displayed objects being mouse sensitive. The objects on
the screen will be easily manipulated using the mouse as
an input device.

Multi-mode Input and Editing Capability
An additional characteristic that the interface should
demonstrate is a multi-mode operational ability. The
multi-mode input capability will give the user the greatest
amount of freedom in developing their descriptions and
designs. This is especially important since IDEF3 and
IDEF4 are relatively new methodologies that do not have
well defined strategies for model development. These

Philosophy of Operation Knowledge Based Systems, Inc.

multi-modes will serve as experiments to determine which
modes are useful and which modes are useless as well as
to define an organized development strategy for process
descriptions and object oriented designs.

Knowledge Based Operation

Probably the most important aspect of these tools is that
they demonstrate a good deal of knowledge based
operation. The tools should have an understanding of the
effect that certain operations will have on the process
description or design database. When these operations are
performed, the tool should have the ability to revise the
model database intelligently so that the number of
operations required by the user is reduced to a minimum.
Also, the tool should have some conflict resolution
strategies encoded into the system to ensure that the
models are consistent at all times. The user should not be
required to resolve conflicts that can be safely resolved
using algorithmic or heuristic methods.

By adhering to these concepts, the prototype tools will give the
expert the support necessary to effectively develop IDEF3 process
flow descriptions and IDEF4 object oriented designs. The IDEF3 tool
will allow the expert to:

« Develop and define IDEF3 process description

« Evolve an existing IDEF3 process description

« Identify valid states that objects may exist in during a process
- Expand on information represented in IDEF@ and IDEFI models

The IDEF4 tool will allow the user to:

+ Develop and define IDEF4 design representation

« Evolve an existing IDEF4 design

» Modify the design of an existing software system

. Use an IDEF4 design to maintain an Object Oriented Software
System

To provide these capabilities and to produce designs that could be
beneficial to the design of full-scale production tools, several design
goals were identified that regulated the development of the
prototype tool designs. These goals are to:

Philosophy of Operation Knowledge Based Systems, Inc.

« Design tools that demonstrate a high degree of functionality

« Design tools that incorporate knowledge based characteristics

« Design tools that can be upgraded to fully functional tools (on
Symbolics)

« Design tools that will adapt to other hardware platforms

« Design tools that demonstrate the advantages of an object
oriented database system

« Design tools that can be integrated with both analysis and
requirements tools and with code generation tools in
programming environments.

IDEF3 and IDEF4 are powerful description capture and design
methodologies. The development of prototype automated tools for
these methods provides a showcase for the capabilities of the
methods as well as the opportunity to demonstrate the effect that
new technologies can have on the development of software systems.

To effectively automate the methodologies requires that the tools
exhibit certain functional qualities such as knowledge based
operations, multi-mode editing capability, an no redundant data
entry, among others. In addition to this, the tools must provide the
user with a robust set of capabilities that will allow them to easily
model and design their systems. It is for these reasons that the
design goals enumerated above have strongly influenced the design
of the prototype IDEF3 and IDEF4 tools.

Philosophy of Operation Knowledge Based Systems, Inc.

3.0 Functional Summary

The focus of this document now shifts to the actual designs of the
IDEF3 and IDEF4 tools. This section describes the components that
will make up the two tools and what functionality each component
will provide. As such, this section will provide a mapping between
the components of the two tools and the functional requirements
defined for the two tools in “IDEF3 and IDEF4 Automation System
Requirements Document and System Environment Model”.

3.1 IDEF3 Functional Operation

Conceptually, the IDEF3 tool will consist of several interacting
utilities:

Unit of Behavior Pool Browser

Object State Browser

IDEF3 Process Flow Diagram Facility
Object State Transition Diagram Facility

The Unit of Behavior Pool Browser will provide a listing of all the
Units of Behavior that have been defined within the current scenario.
The browser will provide the ability to find what process
descriptions make use of a specific UOB, obtain information on the
UOB’s elaboration and decompositions, as well as modify the UOB.

The Object State Browser will provide a listing of all Object States
that have been defined within the current scenario. This component
will support the selection, modification, and viewing of the various
object states.

The Process Flow Diagram Facility allows the UOBs, Links, and
Junctions to be laid out into a valid process flow description. This
mode will allow movement between different descriptions that are
part of the same scenario as well as view the decompositions of UOBs
that make up a process flow description.

The Object State Transition Diagram Facility provides the capability
necessary to define a valid Object State Transition network. It will
allow for the addition of object states to the diagram, the
specification of transition arcs between objects states, and the
labelling of transitions arcs with other state transition diagrams.

Functional Summary Knowledge Based Systems, Inc.

Figure 1 provides a mapping between these components and the
functional requirements defined in the requirements document. The
sections mentions in the diagram refer to sections in the IDEF3 and
IDEF4 Automation System Requirements Document. Notice that a
certain degree of overlap exists between the various modes. This
characteristic gives the domain expert the greatest degree of
freedom in developing the process descriptions and should allow for
the rapid development of those process descriptions.

IDEF3 Object Unit of Object
Process State Behavior State
Flow Transition Pool Browser
Diagram | Diagram Browser
Facility Facility
Unit of Behavior Operations \ v
(Section 3.1.1.1)
Link Operations \j
(Section 3.1.1.2)
Junction Operations v
(Section 3.1.1.3)
Reference Operations ~ v
(Section 3.1.1.4)
Elaboration Operations N N v v
(Section 3.1.1.5)
Object State Operations v v
(Section 3.1.2.1)
Transition Arc Operations v
(Section 3.1.2.2)
Scenario Operations \
(Section 3.2.1)
Decomposition Operations v v
(Section 3.2.2)
Information Management N N N, N
Operations (Section 3.5)

Figure 1. IDEF3 Functional Matrix

Functional Summary Knowledge Based Systems, Inc.

10

3.2 IDEF4 Functional Operation

Conceptually, the IDEF4 tool will consist of several interacting modes
of operation as well:

Class Submodel Browser
Feature Pool Browser
Method Submodel Browser
IDEF4 Diagram Facility

The Class Submodel Browser will provide a listing of all classes that
have been defined in the current design. With each class, the user is
able to access and modify the information associated with a class,
such as its features and its related parent or child classes. Changes to
a class’ relationship with other classes will be automatically reflected
in any diagrams in which the class occurs.

The Feature Pool Browser will provide a listing of all features that
have been defined in the current design. The features will be
defined as separate objects in this system to allow for the situation
where a feature will be defined, but the class to which the feature
will belong has not been decided. Accordingly, within the Feature
Pool Browser, the designer will have the ability to assign a feature to
a particular class in addition to the normal feature operations such as
creation, editing, and deletion.

The Method Submodel Browser will provide a listing of all method
sets that have been defined in the current design. In this browser, it
will be possible to view information associated with a method set, as
well as modify that information. The most important operations to
be supported within this mode is the creation, editing, and deletion
of method sets, the specification of taxonomic links between method
sets, and dispatch mapping between a method set and a feature of a
class.

Finally, the IDEF4 Diagram Facility provides for the generation and
manipulation of all the diagrams specified in an IDEF4 design. Also
within this facility, the designer will have the ability to make
changes to classes, features, and method sets that participate in the
diagram. This will prevent unnecessary changes between the
various object browsers and the diagram facility.

Functional Summary Knowledge Based Systems, Inc.

11

Figure 2 displays a mapping between these four units that will make
up the IDEF4 tool and the functional requirements defined in the
requirements document. The sections referred to in the diagram are
sections in the IDEF3 and IDEF4 Automation System Requirements
Document. Notice that there is a certain degree of overlap between
the tool components and the operations that the components support.
This characteristic will provide the user with the greatest degree of
flexibility in defining and modifying their system design by limiting
the number of mode changes required to make adjustments to the
design.

IDEF4 Class Feature Method
Diagram | Submodel Pool Submodel
Facility Browser Browser | Browser

Class Operations N N,

(Section 4.1.1)

Feature Operations ~ < v

(Section 4.1.2)

Inheritance Link Operations v v

(Section 4.1.3)

Type Link Operations \ \ v

(Section 4.1.4)

Method Set Operations N v

(Section 4.1.5)

Class Inheritance Diagram N

Operations (Section 4.2.1)

Type Diagram Operations N

(Section 4.2.2)

Protocol Diagram Operations N

(Section 4.2.3)

Method Taxonomy Diagram N

Operations (Section 4.2.4)

Client Diagram Operations v

(Section 4.2.5)

Customized Diagram v

Operations (Section 4.2.6)

Information Management N N ~ v

Operations (Section 4.5)

Figure 2. IDEF4 Functional Matrix

Functional Summary Knowledge Based Systems, Inc.

12

4.0 Automated IDEF3 and IDEF4 Tool Design

This section provides a detailed description of the current design for
the Automated IDEF3 and IDEF4 Tools. The section will make use of
IDEF3 and IDEF4 descriptions to relay the tool design as well as
textual discussion to elaborate on the design and to explain why
certain design choices were made. IDEF4 diagrams will define the
data structures (objects) that will exist within the IDEF3 and IDEF4
tools while IDEF3 process flow descriptions will be used to relay the
interactions a person would have with the tools while developing
their process descriptions or object oriented designs.

4.1 IDEF3 Design Components

Up until now, the discussion has been focused on both the IDEF3 and
IDEF4 tools. At this time, a more detailed analysis of the IDEF3
design will be presented while the IDEF4 design will be presented in
Section 4.2. This discussion begins with the definition of the classes
that will exist within the IDEF3 system along with their inheritance
relationships to each other.

4.1.1 IDEF3 Data Structures

l IDEF3 Element
@ Description : String @ Name : Symbol
= @ Label : String
Glossary Mixin

Figure 3. IDEF3 Mixin Classes Type Diagram

Figure 3 displays the type diagram of three classes that will be used
for 'mixin' purposes. What this means is that instances of these
classes will not exist within the IDEF3 system. Instead, the
characteristics of these classes will be 'mixed’ into other classes
through feature inheritance. These classes represent a group of
features and functionality that are common to several classes in the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

13

system. As a result, these common elements are pulled out into their
own classes so that the code to implement the operations will be
developed only once.

4.1.1.1 IDEF3 Element
This class represents the basic functionality required for
the manipulation, display, and presentation of any element
in the IDEF3 system. As yet, no features have been
identified, but various display operations have been
defined for the IDEF3 elements.

4.1.1.2 Glossary Mixin
This class represents a textual description that will be
attached to instances of classes that inherit from this class.
The only feature defined for Glossary Mixin is Description,
a slot accepting a value of type String. This description
captures information explaining the purpose for the object
to which the description is attached.

4.1.1.3 ID Mixin

This mixin class will be used for identification purposes.
Its two attributes, Name and Label will be used to
uniquely identify an object. The Name slot accepts values
of type Symbol while the the Label slot accepts values of
type String. In cases where only the name is required to
uniquely identify an object, the label attribute will take a
nil value.

Figure 4 contains the type diagram for the objects that make up the
process flow descriptions. This diagram describes the individual
objects that make up the process descriptions as well as the
organizational objects that structure the description.

4.1.14 Linkable Object

This class is really a mixin class but was included in this
diagram to indicate its features’ return types. The purpose
of this class is to indicate that any instance of a class that
mixes in Linkable Object can be linked to other objects. As
such, a linkable object can have a link coming into the
object (In Link) and a link leaving the object (Out Link).
These attributes return values of type Link.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

14

T Objects : §Object
? Facts ; §Fact
? Constraints ; ¢ Constraint

@ Node # : Symbol ? Owner UOB
? IDEF@ Ref. : Symbol
7 Elaboration - Elaboration

7 Decompositions =p————
? References : § Referent

UOB

Linkable Object

@ Type : Keyword
? Owner UOB

Decomposition

RAOLS) T —
7 Links =)
? Junctions =y—

@ Type : Keyword
? Objects : §Object

? References —»— " Front : t
? Objects : ¢Object ?Back it
Process Description Link

@ Type : Keyword
@ Timing : Keyword

Junction

| Scenario |

@ Type : Keyword
7 Page # : Symbol
? Referenced Object : t

Figure 4. Process Flow Objects Type Diagram

4.1.1.5 Scenario

The Scenario class is an organizing structure that
represents the highest level of organization in an IDEF3
description. An IDEF3 process flow description consists of
several levels of process descriptions, where a UOB can be
described in greater detail by attaching decompositions to
that UOB. However, the top level process description is not
a decomposition. Instead, this top level is a scenario. The
scenario class does not have any owned features because
the scenario is just a special case of a decomposition. The
scenario’s functionality will be derived through inheritance
relationships to be discussed later in this section.

4.1.1.6 Process Description

The process description is the basic organizing unit in a
process flow description. This class will maintain all the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

15

objects that are part of a certain process flow description.
UOBs is an attribute that will access the list of UOBs that
are part of the process description. The attribute Links
will maintain a list of links that relate the UOBs, Junctions,
and Referents in a process description. Junctions is an
attribute that will maintain a list of all Junctions in the
description. Referents is an attribute that will maintain a
list of Referents that occur in the process description.
Finally, Objects will be a list of Objects that are somehow
manipulated within this process description.

4.1.1.7 Decomposition

The Decomposition class represents an object that is
associated with a Unit of Behavior. A decomposition gives
a more detailed description of its parent UOB. A
decomposition can be one of two types: objective or view.
The Type attribute will indicate what type a particular
decomposition is. The Decomposition class must also be
attached to a Unit of Behavior. The Owner UOB attribute
will provide a link to the Unit of Behavior to which the
decomposition is attached.

4.1.1.8 UOB

The UOB class represents the Unit of Behavior entity in
IDEF3. Every UOB has an identifying node number that 1S a
Symbol. There is also an optional IDEF@ Ref. attribute.
This Symbol, if provided, will reference an IDEF@ activity
that the UOB is somehow associated with. A UOBs
Elaboration will be referenced through the Elaboration
attribute and the UOBs decompositions will be referenced
through a list of decompositions maintained by the
Decompositions slot. Finally, the UOB class also has a
Referents attribute. This feature was added mainly to
make the implementation of some functionality easier. Its
purpose is to keep a list of all Referents that make use of
this UOB. This will make searching for references to this
UOB much easier.

4.1.1.8 Elaboration
The Elaboration class represents the IDEF3 Elaboration.
The Owner UOB attribute takes a UOB as its value and is a
link between an Elaboration and the UOB that the
elaboration describes. The other three attributes maintain

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

4.1.1

4.1.1.

4.1.1.

the information that make up the elaboration. Objects
keeps a list of objects that are somehow manipulated by
the UOB. Facts keeps a list of facts that define the current
state of the objects. Finally, Constraints maintains a list of
constraints that the objects must satisfy.

.9 Referent

The Referent class represents the IDEF3 Referent. A
referent has three features: a keyword type, indicating the
type of reference being made; a Page # symbol,
representing the page number where the reference is
described further; and a Referenced Object, accessing an
object that is being referenced.

10 Junction

The Junction class provided for branching in the process
descriptions. A junction has a Type, indicating And, Or, or
XOR, and a Timing, indicating Asynchronous or
Synchronous, attribute. ~ Both of these attributes accept
keyword values.

11 Link

The Link class defines the relations between linkable
objects. A link can have a Type to specify whether it is a
precedence, object flow, or relational link. If the link is an
object flow link, then the objects that flow through the link
are attached to the Objects attribute. Finally, the two
linkable objects that are related by the link are specified
by the Front and Back attributes.

16

Figure 5 presents the type diagram for the classes defined for the

Object State Transition Diagrams in IDEF3.

These diagrams define the

various states that an object may exist in as well as the constraints
that must be satisfied before a transition can take place.

4.1.1.

Automated IDEF3 and IDEF4 Tool Design

12 Object

The Object class simply represents an object that play
some role in a process description and is somehow affected
by that process description. Its Elaborations attribute
refers to any Elaborations in the process description that
refer to this object while the Flows attribute references
any Object Flow links that indicate this object is to flow
between two Units of Behavior.

Knowledge Based Systems, Inc.

17

? Object States ——

—0 ? Transition Links)— ? Elaborations : § Elaboration

? Flows :§Link
Object State Transition 06
TObject b
? Attribute Value Pairs $—
7 Pre-trans Restrictions $—
? Post-trans Restrictions -
Object State 7 Atiribute : Symbol
?Value : t
? IDEF1 Ref. : Symbol
()
» pont Auribute Value Pair
_ﬂ ? Referent : Referent
? Object State Transition
Transition Link

Figure 5. Object State Objects Type Diagram

4.1.1.13 Attribute Value Pair

The Attribute Value Pair class will be used to define object
states and constraints on object. The pair will represent an
object attribute and a value that the attribute must adhere
to for the state to exist of the constraint to be satisfied.
The Attribute feature refers to the attribute of the object.,
the Value feature indicates the value that the Attribute
must take, and the IDEF1 Ref. feature indicates an IDEF1
Attribute Class with which the Attribute is associated.

4.1.1.14 Object State

The Object State class is used to define the state of an
object. The Object attribute references the object for which
the object state is being defined. The list of attribute value
pairs maintained in the Attribute Value Pairs attribute
actually defines the state while Pre-trans Restriction and
Post-trans Restriction attributes maintain lists of constraint
defining attribute value pairs that must be satisfied before
beginning a transition and before completing a transition,
respectively.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

4.1.1.15

4.1.1.16

Transition Link

The Transition Link defines a transition between two
object states. These two states are referred to by the Front
and Back attributes of the link. Also, the link can have a
referent attached to it through the Referent attribute to
indicate a process flow that must be executed to effect the
transition. Similarly, another object state transition
diagram can be attached to a link through the Object State
Transition attribute to specify another transition network
breaks this transition down into further detail.

Object State Transition

The Object State Transition class represents the organizing
structure of the object state transition diagram. It keeps
track of all object states and links that are defined in the
diagram. The Object States attribute keeps a list of objects
states used in the diagram while the Transition Links

18

attributes keeps a list of the transition links that are
defined in the diagram.
@ Description (@ Name
Glossary Mixin IDEF3 Element —
ID Mixin
?7UOBs
? Links
? Junctions
7 References
? Objects
Process Description
ype
? Owner UOB
Scenario e =
Decomposition

Figure 6. IDEF3 Organization Objects Class Inheritance

Automated IDEF3 and IDEF4 Tool Design

Diagram

Knowledge Based Systems, Inc.

19

Figure 6 presents the Class Inheritance Diagram for the
organizational structures of IDEF3. The most important fact
represented here is that both a Scenario and a Decomposition are
Process Descriptions. The main difference is that a scenario 1is a
named process description while a decomposition has no name, but is
instead referenced by attaching it to a UOB (Owner UOB). A
Decomposition also has a Type attribute that a scenario does not
require. Also notice that the Scenario class inherits all of its
characteristics from the Process Description class and the ID Mixin
class.

Figure 7 presents the class inheritance diagram for the process
description elements of IDEF3. To begin with, all five objects
(Elaboration, Link, Junction, UOB, and Referent) inherit from IDEF3
Element and Glossary Mixin. More interestingly, notice that, of these
objects, only UOBs and Referents inherit from ID Mixin. As a result,
instances of the other classes must be references through other
means. Finally, also note that UOB, Junction, and Referent inherit
from the Linkable Object class, indicating that instances of these
classes can be specified as the front or back object of a link.

Finally, Figure 8 presents the class inheritance diagram for the
classes that define the Object State Transition diagrams. This is a
pretty uneventful diagram as all five classes, Object State, Object,
Transition Link, Object State Transition, and Attribute Value Pair,
inherit from Glossary Mixin, IDEF3 Element, and ID Mixin.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

20

a0n WURIJY
suondiosaq $$30044 ¢, 12[q0 Bocaomom 6
suonisodwodad ¢, # o»mn_ 6
UOHRIOQR[Y ¢, addL @
398 @44l ¢,
9pON)
192140 21qeAur] o
V—C—‘.— H—dﬁv m.. —BN‘A @
NUIT U] ¢, QUWIBN @

Jur]
¥oed
uonodunf ol ¢, uonelioqejyq
uiil], $193[qQ) |,
SIUIRLISUO)) ¢,
S108] ¢,
$192(q0 ,
wowalg £49dl Ui Amssojn
uondudsxyq @

Basic IDEF3 Objects Class Inheritance Diagram

Figure 7.

Inc.

Knowledge Based Systems,

Automated IDEF3 and IDEF4 Tool Design

21

Ul UONISURL],

uorIsuel 1, 91e1§ 199[qQ ¢

WOI9J9Y |,

1oed

oy |
UoNISUeLL, 91R1S 1990 1010
SYUIT] UONISURI], |, SMOL |,
so11§ 199090 ¢, SUONRIOQRIH /.

1B ON[EA 2_5_._=<L

J9¥ 149al ¢
MN[EA |
ANQUNY |,

eIS 1190

SUOLIDIISIY Sueil-1S0d ¢,

SUOIDLNSIY suell-dld |,
sied ON[eA ANGUNY |,
19990 ¢,

uixIN dl -
——— wowdlg €44dI UIXIN AJBSSO|D)
JWIEN @) uondudssq @

8. Object State Transition Objects Class Inheritance

Diagram

Figure

Knowledge Based Systems, Inc.

Automated IDEF3 and IDEF4 Tool Design

22

4.1.2 IDEF3 User Interface and Constraint Enforcement

At this point, the focus of the IDEF3 design description shifts from
the objects to be manipulated by the system to the processes that are
performed to actually manipulate those objects. Appropriately,
IDEF3 process flow descriptions will be used to relate these
processes. It is hoped that these process descriptions will give the
reader a feel for what it will be like to use the IDEF3 tool. To assist
in achieving this goal, some UOBs will have Referents attached to
them that point to representative screens. These screens will be
drawings of the screen that the user will encounter at that point in
the development process. The discussion of the IDEF3 descriptions
will indicate any constraints that must be satisfied by a particular
process.

NOTES: »

(1) In these IDEF3 descriptions, the numbering
convention of Units of Behavior have been changed.
Because every UOB in these descriptions have only
one decomposition, if any, the decomposition number
after the ‘v’ in the UOBs has been dropped. For
example, if a UOB, 1, had a decomposition with a UOB
numbered 3 in the decomposition, that UOBs node
number would have been 1.v1.3. Instead, in the
following diagrams, the node number would be 1.v.3.
Also, due to the diagram size, the prefix of the UOBs
is being removed and placed in the top left corner of
the diagram. This notation will simplify the
numbering scheme of these diagrams as the number
of decompositions increases.

(2) The UOBs that have shadowed boxes are UOBs that
have decompositions defined for them.

(3) A special character, ¥, is placed in the upper left
corner of a UOB to indicate that that particular UOB
represents an explicit user action. UOBs without that
character represent general procedures of processes
performed by the tool.

(4) Throughout the process descriptions, certain UOBs
that indicate user actions have referents attached to
them labelled “See IDEF3 Screen #”. Sketches of the
proposed screens for the IDEF3 tool have been
created and can be found at the end of this section.
These referents are refering to these screens so that

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

23

the reader can get a feel for what the system will
look like when performing certain operations.

There is one aspect of the IDEF3 tool that was not described in the
process descriptions because of the added complexity it would add to
the descriptions. During the execution of any of the process
supported by the tool, it is possible for the user to abort out of the
process. The effect of this abort is to return to the state that existed
before the aborted process was started.

To begin with, Figure 9 shows the top level process for the
User/IDEF3 Tool Interaction Scenario and its decomposition. Once
the tool has been started, a new description database is created or an
existing description database is opened. The user then decides what
mode of operation (see Section 2.1) they wish to work in and then
begins the development of the process flow description and the
object state transition diagrams. The UOBs 1, 1.v.1, and 1.v.2 all
reference activities defined in the IDEF@ model of IDEF3 that can be
found in “IDEF3 and IDEF4 Automation System Requirements
Document and System Environment Models”.

Develop ldef3
Description
1 A1
Decomposition: 1.v.
Formulate
(D)g:gription —>1 Process Flow
Datahase] . Description
3] Pick Mode 1 A13
5 |
Create (S)Lémn:asritzzta
Description ject State
_Qatah:fﬁ__ — Transition
y |

Figure 9. User/IDEF3 Tool Interaction Scenario

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

24

Decomposition: 1.v.1.v.

Select
Scenario

2 | | Eait
Process

Create
Scenario

B]

Delete
Scenario

4 |

Copy/Coerce
Scenario

5 |

Create
Decomposition

Figure 10. Decomposition of Formulate Process Flow
Description

Figure 10 displays the decomposition of the Formulate Process Flow
Description process. At this point, the user can create an entirely
new scenario, select an existing scenario for editing purposes, delete
a sceanario, copy an existing scenario or coerce a scenario into a
decomposition, or can create a new decomposition. Once one
(because of the XOR junction) of these actions is performed, the user
can begin the process of editing a process description.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Decomposition: 1.v.1.v.6.v.

¥ Pick UOB ¥ Pick Type of
to Decomposition -
Decompose

1 ; | 2 + [

Screen #2: Screen #6:

UOB Decomposition Pop-Up

Browser Pick From List

Figure 11, Decomposition of Create Decomposition

Figure 11 displays the decomposition of the Create Decomposition
process. In performing this operation, the user must specify the UOB
for which the diagram is being created and the type of decomposition
being created (Objective View or View). Also notice the references to
the IDEF3 screens that will be active during the execution of this
process.

Figure 12 presents the decomposition of the Edit Process Description
UOB. An important fact to note about this description is that there is
an implicit loop around this particular process. It would not be very
useful to be able to execute only a single command. Instead, once a
command has been executed, the user can begin processing another
command by using this same process. This description also indicates
the mode of interaction between the user and the system. There are
two different ways to execute a command, by either clicking on a
command in the command menu or by typing the command at the
command line. Also note the the File (database) and Mode
operations are available only through the command menu.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

26

Process UOB
Command

I

Decomposition: 1.v.1.v.1.v.

Process Link
Command

EENE

Process
Junction

¥ ..
Click on ¥ Chose Object Command

Command X _ | Type 3 I

5 | ’]

Process

Referent
> X > X —»1 Command

4

Type Command

Process
Elaboration
1 Command

A

Process
-1 File

Command

Pick Mode

Figure 12. Decomposition of Edit Process Description

Figure 13 displays the decomposition of the Process UOB Command
process. A variety of different commands for the manipulation of
UOBs will be available, each requiring their own execution process.
Notice that the screen reference indicates that these operations will
be performed in the Process Description Diagram. Some of these
operations will also be available in the UOB Decomposition Browser.

Constraints:

The UOB operations have certain constraints that must be satisfy for
the operation to be carried out successfully:

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

27

« The Copy UOB operation requires that the name of the UOB be
changed.

« When a UOB is deleted from a process description, any Referents
that refer to that UOB must be updated to reflect the deletion.

Screen 85
Edil Inf
Dacomposition; 1viviviy 1inle

Create New 1
uoB
E | Place UOB Info Display UOB Accept UOB
l into UOB Edit =41 Edit Window info
e
Choose UOB 3 71 |
10 Edit
2 1
X Choose Create New Copy UOB info Submit New
" ! uoe - uos intc New UOB UOB 10
FI | jyvivivivl s | 10 I [
Remove UOB Update
from Database | Display
r 13 |
Choose UOB to Create Copy LOB
Coerce into & Scenaric info into lm
- Scenario Subrmit
4 v] 12] Scenano to
18 [
Remove UOB
1 from ——
Choose
AT | .mﬁ:.mfmms.
Remove Remove UOB
1 Decompositions _@_. from Database
15 i ™ 1
Screon 21
Process Flow
Duagram Remove Links
w1 from UOB el
16|
Figure 13. Decomposition of Process UOB Command

Figure 14 displays the decomposition of the Process Link Command.
The most significant thing to point out here is that a link will be
created between existing objects. As a result, the user selects the
objects that are to be related by a link.

Constraint:

« A linkable object can have only one link into itself and one link
out of itself. As a result, links can only be created between
linkable objects that have not exceeded these limits.

« When a link is created between a Junction and some other
objects, the resulting structure must be analyzed to determine if
the structure is valid. For example, if an fan-out XOR junction is
eventually linked with a Synchronous AND junction, the
structure is invalid since the AND requires multiple processes to

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

28

terminate while the XOR allows only one process to begin
This situation cannot be allowed.

execution.
Decomposion: 1.v.iviv2y.

R;u:k UOB's to

Choose Link to Add UOB's
which to Add Add to Junction to Link
UOB's Lok
] 2] 7]
T 1X]
F. ;
Choose Link to Choose UOB's Delete UOB's
which to Delete || 10 Delete from |] from Link
UOBs
) 5 T 1
Pick Junction
and 1 of Morg ey
UOB's
[A | Submit Link
Creat Link Get Link to Database
X Cardinality | X
and T Pick Front UOB T]
[| Ty ty vy il and Back UOB
—
Scroen 85
€9t lnto |
¥Choose F Get Link
Link Cardinality
to Chan and Type
LN | 1]
Remove Link
- from —
Remove Link
Choose ..U.%E‘ii.— [trom Database
Link
.IE.QIJAT__ y [IE T

Remove Link
=] trom Junction(s;|

14 |

Remove Link
=~ From Referent =

LI |

X

Command

Update
Display

Figure 14. Decomposition of Process Link
Decompositon: 1.v.1v.1v3v
Screen #5
Editinfo
Create New 1
Junction -
Place Junction Display ¥ Accept
1 nfo into Junction Junction Junction
I E £ dit Window info
3 | |
Choose P
Junction Screen #1
10 Edit Process Flow
Ovagram
2 1
Choose Create New Copy Junction Submit New
X Junction &1 Junction info into New Junction to
| 1o Copy _.Ammi__ ..nixﬂ.hiiﬁ__
1 tvivi3ve 7 8
Choose Remove Remove
Junction - Junction from Junction
Ll irom Database
9 10 | '——]_"‘1 .

Figure 185.

Automated IDEF3 and IDEF4 Tool Design

Update
Display

Decomposition of Process Junction Command

Knowledge Based Systems, Inc.

29

Figure 15 displays the decomposition of the the Process Junction
Command. The junction commands are relatively straightforward as
is obvious by the relatively simple process diagram.
Constraints:
o When a Junction is deleted, those links that are connected to the
junction should also be deleted.

Decomposition: 1.v.iv.ivév

Screen #5
Edit Info

Create New 1
Reverent
Place Referent Display Accept
[| nfa into Referent Referent Referent
I E dit Window ! into
2 ’%‘ﬂ—_ (|
%?:s;“ Screen #1
Process Flow
lﬂf-ml 1 Diagram
s
X ¥ Choose m Create New Copy Referent Submit New Update
” ! Referent Referent info into New ~{-—> Reterent 1o T Dispiay
to Cgi ! _Ed.ﬁ.:ﬁ;il.— .Dﬂﬂhﬂiﬁ—-—
tvividvi 7 {:]
Choose — Aemove
Referent Referent
from Database
B T
. ey
Figure 16. Decomposition of Process Referent Command

Figure 16 displays the decomposition of the Process Referent
Command. These operations will be available in any of the IDEF3
modes since Referents can be used in many different contexts.

Figure 17 displays the decomposition of the Process Elaboration
Command. Though there is no Referent to indicate it in this
description, these operations can be performed in the Process
Description mode or in the UOB Decomposition Browser.

Constraints:
« Only one Elaboration can be associated with any given UOB.
+ When an Elaboration is deleted from a UOB, if that UOB has an
Objective View Decomposition, that decomposition must be
redefined as a simple View Decomposition.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

30

Decompositon: 1.v.1v.iv5v.

Screen #5
Edit tnfo
; 1
Create New Choose
Eiab 1 I~ UOB Place Elaborason Info Display ué‘l:::manon
ho Efaboration Edit fde{ Etaborat = OF
- 1 .I.n;EIa.bfﬁ.lB pro Sat ration Edi E ration oo
— _zgmimu_ —
Choose
Elaboration Sereen #1 I
loEdo Process Flow
at Diagram
¥
‘Choose =1 Create New Copy Elaboratiory Submit New Update
X Elab] Elaboration info into New *m—-— Elaboration to —T Display
_m_gmi Elaboration | - Qﬂlﬂhifﬂ |
7 1vivivivy 8 I g
Choose L] Remove
Elaboration Elaboration
10 i 11 l
. “, e .
Figure 17. Decomposition of Process Elaboration
Command

Decomposition: 1.v.2.v

Process
Object State
glick on F Chose Object
ommand Ty
X"
1 | 2]
Transition Arc
Lol | X |——{| X Command
F Type Command
Process
3 | Proc. Descr.
Diagram Command
Process
| File
Command
Pick Mode
Figure 18. Decomposition of Summarize Object State
Transition

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

31

Figure 18 presents the decomposition of the Summarize Object State
Transition process. The operations at this level are very similar to
the process flow operations. The only difference is the different
modes of operations that are used for Object State Transition
Diagrams.

Screen #5
Decomposition: 1.v.2v.4.v Edit Info
Create New 1
Object State
Dlace Obj. State Display [¥ Accept Ob)
[I nto into Obj. Sta Object State State
Chooss
Object State
1o Edit
P |
Chose Object || Create New Copy Obj Suwomit Update
ﬂE State 1 Object State State info into X Object State to Display
Now Obj State Database L
ey K ETE Y T 1
Chose Obpct |] Pamove Atached
State Current Diagram
e — i
Screen 43 Delata Ob.
Otyect State State from Othe
Browser
12
. oy e .
Figure 19. Decomposition of Process Object State

Command

Figure 19 displays the decomposition of the Process Object State
Command process. The operations on an Object State in a Transition
Diagram are very similar to the operations that would be performed
to a UOB in a process description diagram. These operations will be
available in the Object State Transition Diagram mode or in the Object
State Browser.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Screen #5
Decomposition. 1.v2vSv. Edit Into
Create New 1
Transtion Arc
Place TA Info into Display ¥Accept TA
i 1 I I A Edit Window Object State into =
1 4 i 5 1
YChoose Screen# 4
Transition Arc Process Desc
Diagram
2
” ! ¥ Choose n Create New Copy TA info Submit Update
X Transition Transtion into New TA TAto Display
Arc Dalabase
ALE.IQ+QE¥. g - 1 T
YChooseTran. | Remova
Arc Transttion Arcs
From Obj State
] I 10 |

Figure 20. Decomposition of Process Transition Arc
Command
Figure 20 shows the decomposition of the Process Transition Arc
Command. Its operations are very similar to the Link operations in
that the arc must be specified between existing object states. These
operations will be available only in the Object State Transition
Diagram mode.

Decomposition: 1.v.2veé.v

Create New
Proc. Desc

Pick UOB or
1 Scanario to

3 i
Ychoose

Screen #6 |

Proc. Desc. Net Pop-Up Pick

From List

Update

¥,

Choose Proc. = Create New Copy PDNR Submit New

X Desc. Net Ref Proc Desc nfo into New _——' PDNR to Display
X1 o o _

_lm.'___ Ng‘g aﬂ PONBR
4 f 1vavevl i

ChooseProc Desc | Remave
:%z:’m PDNR from the
- T .emmr_
Figure 21. Decomposition of Process Process Description

Diagram Command

Figure 21 displays the decomposition of the Process a Process
Description Diagram Command. The purposes of these operations is

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

33

to attach a process description to a transition arc. The semantic
effect of doing this is to indicate that the process attached to the link
will effect the transition between object states linked by the arc.

Figures 22 through 27 display potential screens that will exist within
the IDEF3 system and are the screens that are referenced within the
process descriptions. These screens are meant only to give a rough
idea of how the tool screens will appear. Figure 22 shows a potential
Process Flow Diagram screen. Figure 23 displays the Unit of Behavior
Decomposition Browser. Figure 24 shows the Object State Browser.
Figure 25 shows the Object State Transition Diagram screen. Figure
26 displays an Input/Edit Pop-up Window. Finally, Figure 27
displays a Pick From List Pop-up Window.

Process Flow Diagram

Commands Scenario: Idet3 Tool Process Decomposition: 1.v.1.v.1.v.2v
Create N e

emove Lin
COP y —{ From UOB(s)
Edi
Delete]
Coerce

R Link

e X

HRemove Link

From

Referant

l
Command:
Figure 22. IDEF3 Screen #1 - Process Flow Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

34

UOB Decompostion Browser
Commands
Develop IDEF 3 Description
1.v.1 - Formulate Process Flow Description
Create 1.v.1.v.1 - Edit Process Description
Copy 1.v.2 - Summarize Object State Transition
Edit
Delete
Coercs
Command:

Figure 23. IDEF3 Screen #2 - UOB Decomposition

Browser
Object State Browser
Commands Object State One

Atnt-value Pair One
Creats Att-value Pair Two
Copy Pre-Regquirement
Edit Post-Requirement
Delete
Coerce
Command:

Figure 24. IDEF3 Screen #3 - Object State Browser

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Object State Diagram

Commands

Create

Copy i 7

it

Delete | Post g:::' ::u"emems |

Coerce | g‘:g“‘“’"“’ms one One N
r - - -7
Post Object Pre |
Requirements State Requirements
Two Two
L - - w

Command:

Figure 25. IDEF3 Screen #4 - Object State Transition
Diagram
Generic Edit Pop-Up Window

Name:

Selection: type 1 type 2 type 3

Value

O Doit O cancel

Figure 26a.

IDEF3 Screen #35a - Edit Pop-up Window

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

Generlc Text Edit Window

XXXXXXXXXXRXXXXXXXXX
XXXXXXXXXXXXXXKXXOXXXXXXXXXXX XXX KXXXXXXXXXKXX
XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX XXX XXX XXXXXXX
1 9.0.90.0.9.00099999 99000604

XXXXXXXXXXXXXHXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXX
XXXXXXXXXXX

36

Figure 26b. IDEF3 Screen #35b - Text Edit Pop-up Window

Generic Pick From List Pop-Up

item One
ltem Two
Item Three
Item Four
ltem Five
Item Six

Figure 27. IDEF3 Screen #6 - Pick From List Pop-up

Window

4.2 IDEF4 Design Components

At this time, a more detailed analysis of the IDEF4 design will be
presented. This discussion begins with the definition of the classes
that will exist within the IDEF3 system along with their inheritance
relationships to each other. After the classes have been defined, the
IDEF4 processes that manipulate instances of those classes will be
described. These processes will give a feeling for how the user will

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems. Inc.

37

interact with the IDEF4 tool to effectively design an object oriented
system.

4.2.1 IDEF4 Data Structures

IDEF4 Element

Description : Stri @ Name : Symbol
@ Description : String @ Label - String
Glossary Mixin D Mixin

Figure 28. IDEF4 Mixin Objects Type Diagram

Figure 28 displays the type diagram of three classes that will be used
for 'mixin' purposes. The term ‘mixin’ serves the same purpose here
as it did in the discussion of the IDEF3 mixin classes. These classes
represent a group of features and functionality that are common to
several classes in the system. As a result, these common elements
are pulled out into their own classes so that the code to implement
the operations will be developed only once.

4.2.1.1 IDEF4 Element
This class represents the basic functionality required for
the manipulation, display, and presentation of any
element in the IDEF4 system. As yet, no features have
been identified, but various display operations have been
defined for the IDEF4 elements.

4.2.1.2 Glossary Mixin
This class represents a textual description that will be
attached to instances of classes that inherit from this class.
The only feature defined for Glossary Mixin is Description,
a slot accepting a value of type String. This description
captures information explaining the purpose for the object
to which the description is attached.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

38

4.2.1.3 ID Mixin
This mixin class will be used for identification purposes.
Its two attributes, Name and Label will be used to
uniquely identify an object. The Name slot takes Symbols
as its value while the Label slot accepts Strings as its value.
In cases where only the name is required to uniquely
identify an object, the label attribute will take a nil value.

Figure 29 displays the type diagram for the remaining classes that
will make up the IDEF4 system. These classes map very closely to
the IDEF4 entities that were described in the requirements
document. One special note should be made on some of the Feature
types. Notice that the Front and Back attributes of the Link class,
among others, accept values of type t. This notation is used to
indicate that the actual type accepted by the attribute is more
complex than could be indicated in the type diagram. The actual
type of each of these attributes will be discussed with the
explanation of the class definition below.

4.2.1.4 Class Grouping
The Class Grouping class will be used as a ‘mixin’ class. Its
one attribute, Classes, will maintain a user specified list of
classes. The classes main use will be to maintain the list of
classes that appear in specific diagrams.

4.2.1.5 Class
The Class class defines the basic unit of an IDEF4 design.
Each Class has a list of Features Uses and a Class Invariance
Data Sheet associated with it as well as a list of parent
classes, Superclasses, and a list of child classes, Subclasses.
It is through these last two features that the inheritance
relationships are maintained in the class submodel.

4.2.1.6 Method Set
The Method Set class maps directly to the IDEF3 Method
Set. The Contracts attribute maintains the method set’s
contract specifications while the Mappings attribute links
the method set with Class-Feature pairs that are
dispatched to this method set.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

39

R

1iyoey ¢
1981U0D) 11U044 |,
Suing : vonedyoadg ¢, |
13S POYRIN

-

$SB[) Ul 3S(] AL

19S POYIIA : 19S POYIdIA ¢, yuowngdry
SSB[D) $SB[D) ¢,

pIomAy| : 9poN Aeidsig 2dA L, @

1000101
1: DQ%..—; i ﬂ/lr[

€< SHUT B0 ¢
€ 538 Umed] |,

AWOUOXE], POYA

—€ 5195 POYIdIA {

yury ¢ s3uiddepy s .
—- S19BNUOD) |, S{uri ¢

PIOMAIY : 310y @ ° *macou_w_hww/\ i
yradAy, ¢ r— 189 ¢,
ANBY : AUMe |,

$SB[D ¢ $IsSBIOQNG

sse[D §: sassejoradng ¢
SuLng : ddurvLRAU] SSBLD) |,
&— SIS[) MBI |,

-

ALY

PIOMADY : 3]0y I[nejoq @
11 adA 1 yneyaqy,
SSB[D UL 3S() QUNIB] § © SIS[) ¢,

SASSB[D) ¢,

SSB[D) 1 SSB[D 100y ¢,

wersel(q AL weideiq

durILIAYU] SSB[D

IDEF4 Objects Type Diagram

Figure 29.

Knowledge Based Systems, Inc.

Automated IDEF3 and IDEF4 Tool Design

40

4.2.1.7 Link

The Link class is used to specify a relationship between
two IDEF4 objects. The most notable links will be the
subset/superset relationship in Method Taxonomy
diagrams and the caller/callee relationship in Client
diagrams. The Front and Back attributes indicate the
objects that are related by the link. Notice that these
attributes accept values of type t, indicating that the
attribute type can vary with the context of the link use.

4.2.1.8 Feature

The Feature class represents an IDEF4 class feature. In the
tool, though, a feature exists as a separate object, as
opposed to a part of a Class, since a feature can be used
and redefined in several different classes through
inheritance. By creating a feature as a separate object, the
functionality of the feature can be represented only once
while the tracking of feature use and feature redefinition
can be accomplished by other means. The Root Class
attribute indicates the class that is said to initially define
the feature. It is from this root class that it is determined
if later uses of a feature result in redefinitions of the
feature. The Uses attributes maintains a list of all classes
that use the feature through class inheritance. The Default
Type attribute specifies a default feature type to associate
with the feature when no other type has been specified.
The Default Role attribute serves the same purpose as the
Default Type, except that it specifies the role that the
attribute will assume (i.e., attribute, function, slot, etc...).

4.2.1.9 Feature Use In Class

The Feature Use In Class class is the method by which the
IDEF4 tool will track the inheritance and redefinition of
features. This class defines a ‘use’ link between a class and
feature. The Feature attribute references the feature to be
used while the Class attribute references the class that will
use the feature. When a feature is used, its type and role
can be redefined. The Type and Role attributes exist to
capture the type and role that the feature is to have for
the particular class. A Feature Use also has a Type Display
Mode to indicate how the feature type should appear in a
Type Diagram and Method Set attribute that maps this
Class-Feature pair to a specific method set.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

4.2.1.

4.2.1.

4.2.1.

4.2.1.

4.2.1.

10 Argument

The Argument class is used to represent information that
will appear in a Protocol Diagram. IDEF4 allows a protocol
to be defined for features of classes. This protocol specifies
a list of arguments to the feature as well as the types of
those arguments. The argument class captures the name of
an argument to a protocol along with the type of that
argument.

11 Contract

The Contract class provides the definition of a Method Set.
When a feature maps to a method set, it can attach a
requirement that must be fulfilled by the method set. This
requirement is called a contract. A contracts only attribute
is its Specification, a string of information that describes
the contractual requirement for the feature.

A2 Diagram

The Diagram class represents a graphical display object
within the IDEF4 system. It has no features of its own but
will provide basic functionality required for the display of
the more specific IDEF4 diagrams.

13 Class Inheritance

The Class Inheritance class represents the IDEF4 Class
Inheritance Diagram. This class has no owned features, but
does inherit features as will be discussed later in this
section.

14 Type Diagram

The Type Diagram class represents the IDEF4 Type
Diagram. This class has no owned features, but does
inherit features as will be discussed later in this section.

15 Protocol

The Protocol class specifies the protocol diagram for a
particular feature use. The Feature attribute accepts a
Feature Use in Class object as its value that will define the
feature/class pair for which the protocol is being defined.
The Arguments attribute is simply a list of Argument
objects that define the argument list of the protocol.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems.

41

Inc.

4.2.1.16

4.2.1.17

Method Taxonomy
The Method Taxonomy class organizes the method
taxonomy diagrams. This class maintains the list of

method sets that will appear in the diagram (the Method
Set attribute) and the list of links that specify the

taxonomic relationships between the method sets (the
Links attribute).

Client
The Client class organizes the IDEF4 Client diagrams. This

class tracks the list of feature/class pairs that are to
appear in the diagram (the Feature Uses attribute) as well
as a list of the caller/callee links that exists between the

42

class/feature pairs (the Call Links attribute).

@ Description

| Glossary Mixin |

—]

IDEF4 Element

? Type
@ Role

? Class

? Feature

@ Type Display Mode
? Method Set

Feature

Use in Class

? Feature Uses

? Class Invaniance
? Superclasses

? Subclasses

(@ Name
@ Label

ID Mixin

Class

? Root Class

? Uses
TDefault Type
@Default Role

—
Feature

? Contracts
? Mappings

| Method Set

Figure 30. IDEF4 Basic Object Class Inheritance Diagram 1

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

43

(@ Description (@ Name
s Mo | TDEEA Elomen: D@N’;‘f’:‘
xi
Y
? Specification 7 Front ? Type
rﬁ ? Back lﬁﬁ
Link

Figure 31. IDEF4 Basic Object Class Inheritance Diagram 2

Figures 30 and 31 show the inheritance relationships that exist
between the basic IDEF4 class structures. The relationships in these
two diagrams are pretty trivial: every class is an IDEF4 element and
every class has a glossary description associated with it. Probably
the most important thing to notice is that the Feature Use in Class
class in Figure 30 and the Contract and Link classes in Figure 31 do
not inherit the ID Mixin. This implies that uniqueness will be
determined by other means and that instances of these classes will
have to be accessed through other objects that refer to them. The
type diagrams above show how these classes will be related to other
objects within an IDEF4 design.

Finally, Figure 32 displays the inheritance structure of the IDEF4
diagram objects. The Diagram object inherits from IDEF4 Element,
Glossary Mixin, and ID Mixin. Since every diagram class inherits
from this Diagram class, every diagram will have a name and a
glossary entry associated with it. Also note that the Class
Inheritance and the Type Diagram classes inherit from the Class
Grouping class. This mixin class provides the feature necessary to
maintain a list of classes within the class instance. This list will
represent the classes that are to appear in that particular diagram
instance.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

44

{02010

AWOuOXR |, POYIO watD
ST, SRUITII®D ¢
$19G POYISNA |, SIS 2UNILIY |,

suowngy |
aneay ;,

UxiN dl

[3qe1 @
SweN @)

0URILIAYU] SSB[D

EEwEO

wresel adA |,

P —

v

| Juidnoun ssep) |

$ASSBID ¢,

UIXIN ATessojn

uondudsaq

®

IDEF4 Diagram Objects Class Inheritance
Diagram

Figure 32.

Knowledge Based Systems, Inc.

Automated IDEF3 and IDEF4 Tool Design

45

4.2.2 IDEF4 User Interface and Constraint Enforcement

At this point, the focus of the IDEF4 design description shifts from
the objects to be manipulated by the system to the processes that are
performed to actually manipulate those objects. Appropriately,
IDEF3 process flow descriptions will be used to relate these
processes. It is hoped that these process descriptions will give the
reader a feel for what it will be like to use the IDEF4 tool. To assist
in achieving this goal, some UOBs will have Referents attached to
them that point to representative screens. These screens will be
drawings of the screen that the user will encounter at that point in
the development process. The discussion of the IDEF3 descriptions
will indicate any constraints that must be satisfied by a particular
process.

Since the IDEF3 methodology is in its infancy, development strategies
for producing process descriptions are non existent. In defining the
specifications for the prototypes, two different approaches of process
development were taken so that understanding of how well IDEF3
works in certain situations could be gained. The process description
of the IDEF3 tool was developed on a high level with considerable
textual elaboration. However, the IDEF4 tool process description was
developed on a lower, more specific level. As a result, there is very
little textual descriptions to coincide with the process descriptions.
Hopefully, both levels of description are sufficient for our purpose,
but comments on reader preferences would certainly be appreciated.

Because of the more detailed approach mentioned above, the IDEF3
description of IDEF4 has resulted in a extremely large number of
diagrams. In an attempt to simplify the tracking of the
decompositions of the UOBs, the diagrams defining the decomposition
for a UOB has been placed as close to the diagram that contains the
UOB being decomposed. The List of Figures may also prove helpful in
finding the various decompositions.

NOTES:
(1) In these IDEF3 descriptions, the numbering
convention of Units of Behavior have been changed.
Because every UOB in these descriptions have only
one decomposition, if any, the decomposition number
after the ‘v’ in the UOBs has been dropped. For
example, if a UOB, 1, had a decomposition with a UOB
numbered 3 in the decomposition, that UOBs node

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

46

number would have been 1.v1.3. Instead, in the
following diagrams, the node number would be 1.v.3.
Also, due to the diagram size, the prefix of the UOBs
is being removed and placed in the top left corner of
the diagram. This notation will simplify the
numbering scheme of these diagrams as the number
of decompositions increases.

(2) The UOBs that have shadowed boxes are UOBs that
have decompositions defined for them.

(3) A special character, ¥, is placed in the upper left
corner of a UOB to indicate that that particular UOB
represents an explicit user action. UOBs without that
character represent general procedures of processes
performed by the tool.

(4) Throughout the process descriptions, certain UOBs
that indicate user actions have referents attached to
them labelled “See IDEF4 Screen #°. Sketches of the
proposed screens for the IDEF4 tool have been
created and can be found at the end of this section.
These referents are refering to these screens so that
the reader can get a feel for what the system will
look like when performing certain operations.

There is one aspect of the IDEF4 tool that was not described in the
process descriptions because of the added complexity it would add to
the descriptions. During the execution of any of the process
supported by the tool, it is possible for the user to abort out of the
process. The effect of this abort is to return to the state that existed
before the aborted process was started.

.| Design/Maintain
—> 0O System with
IDEF4

Decomposition 1.v

[Ose IDEFZ Design
Develop IDEF4 Evolve IDEF4 ko maintain OOPS
—p»| Design Design — S ofiware —
Representation
2 | a3 3 | a4
Figure 33. Design/Maintain OO System with IDEF4

Scenario

Automated IDEF3 and IDEF4 Too!l Design Knowledge Based Systems, Inc.

47

Figure 33 contains the first two levels of the IDEF4 tool process
description. The process of designing an object oriented system is
broken down into the three processes defined at the bottom of the
figure. Though these three processes are very similar in the
operations that are performed, the distinction is made to indicate
that different aspects of the design will be accessed during these
processes and that the processes will be performed by different
people. In this description, the focus will be on the Develop IDEF4
Design Representation Process.

Decomposiion 1.v.1y

L
z%

]
il

1]
i

!
i

¢

i3
i
¥

:

XX XX

i

Suan IDEF4

_E
]

i
1
{

1
i

Q‘E’
E%
|

Execute ‘Change
| Mode' Command

L-. Execute File'

Figure 34. Decomposition of Develop IDEF4 Design
Representation

Figure 34 shows a high level view of the execution of the IDEF4 tool.
After loading the IDEF4 tool, the user has the option of either typing
a command at the command line or selecting a command from the
command menu. The column of processes on the right of the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

48

diagram represent the different modes of operation that the IDEF4
tool can operate under. Also notice that the command execution
phase of the process is an iterative process.

Decomposition 1.v.1.v4.v

Execute 'Create

—p{ Class' Command

Execute Delete

L —pp| Class’
Command

Execute 'Rename
Class' Command

Display/Update

Execute 'Copy
L X | | Class Browser |—p»

Class' Command

X -

10 |

Execute 'Class
b1 Invariant’
Command

Execute 'Feature'
Command

Choose Class to
a1 Show Detail

g |

Choose Class to
| Hide Detail

9 |
Figure 3S5. Decomposition of Process Class Diagram
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

49

Figure 35 defines the various commands that are available for
execution within the Class Browser Mode of the tool. Figures 36
through 43 define these commands in greater detail. It should be
noted that some of this functionality will overlap with other modes
of operations. Also, certain constraints exist that must be satisfied
for the operations to be performed correctly.

Constraints:

Decomposition 1.v.1.v.4.v.l.v

When adding features to a class, features that have already been
“used” by other classes will not be available. The only way a
class can use a feature that is used by another class is through
an inhertance link.

When a class is deleted, classes that inherit from the deleted
class should have the inherited features removed from them.
When an inheritance link is delete, any features that were
inherited as a result of that link should be removed from the
subclass and any subsequent subclasses.

When specifying inheritance links, the tool should ensure that no
circular links are defined. Otherwise, a class could be a parent
class of itself.

If the definition of an inheritance will result in a conflict of two
features, the tool should automatically redefine the feature.

IDEF4 Screen #9 IDEF4 Screen #9 IDEF4 Screen #9
Create Class Flnpux Class Name ﬁdd Superciasses F;dd Subclasses Add Features L pdate Model
Daiab e
l 1' 2 l .\ I & l £ l
Figure 36. Decomposition of Execute Create Class
Command
Decomposition 1.v.1.v.4.v.2.v ¥
Choose Class Remove Feanures Delete Class Remove Class Updat Model
s Invariant Data From Model Database |
Sheet
1ll 2 1 3 1 PR | < 1
IDER4 Screen #6
Figure 37. Decomposition of Execute Delete Class
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

50

Decomposition 1.v.1.v.4.v.3.v

114
Choose Class Input Class Name Update Model
—_— - | Database ——
lvivdv2ovl lyv.lvdv.1lv?] I
Figure 38. Decomposition of Execute Rename Class
Command
Decomposition 1.v.l.vd.vdy
F Choose Class Create Class F Input Class Name Copy Info from Update Model
—P] — - |—»{ old Class to New Database -
Class
Ly lvdyv vl Lvlydyly] Lvlyvdyly L1 2 1
Figure 39. Decomposition of Execute Copy Class
Command
Decomposition 1.v.1.v.4.v.5.v Add Superclasses
[
Lv.lvdviv3i
F
Add Subclasses
W
Choose Class —
- Lvlvdyvlivg X
— X
lvlvdv2vyl FRemove
—=1 Superclasses
1]
Remove
L] Subclasses
2 |
Figure 40. Decomposition of Execute Inheritance
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Decomposition 1.v.l.v4.v.b.v

Choose Class

VB EVY.ETRLXVEN

Figure 41.

51

|X]

21

Create Class Arnach Data Sheet Update Dats
Invariant Daa 1o Qlass Sheet and Class i
Sheet Database

| 21 U |
Remeve ana bdit Class Updaie Data
Sheet from Invanant Data Sheet and Class in]
Dasbase Sheet Datsbase

I] I 1y lydybyl 1y lydyixd

Choose Class to Creae Class Artach Data Sheet Updaw Data
Copy Data Sheet lnvariant Dat to Class Sheer and Class iny
10 Sheet Database

6 1 Ly lyvdysxl 1y lvd by Lyv.lydybyd
IDEF4 Screen #6
Remove Data
Sheet from
Datsbase

Decomposition of Execute Class Invariance

Command

Decomposition 1.v.1.v.4.v.6.v.3

—->

Figure 42.

Put Class Data
Sheet in Edit
Window

F Accept User
S
Sheet

Changes to Data

1|

2

IDEF4 Screen #11

Decomposition of Edit Class Invariance Data

Sheet
Decomposinan 1.v.lvaviv3 Spocity New
Fomuwe
Croase Clas TETPRENT Feaaro To} Astach Fasare T
— Auach ‘eanxe To
1X] Qo ke Sobclassas
Lydy 2y i %Pm!w “ q l
IDEr4 Screen #9 " T
IDEF4 Screen #6
X , X
Choose Feanwe Ramove Feanxe Ramove Feanze
bty To Rexnove fwetited From Class fdin-f From
PR | TSI L lxbasid
Execute Bdut
Festure'
Command

Figure 43.

Automated IDEF3 and IDEF4 Tool Design

Update Model
Ducabase

Decomposition of Execute Feature Command

Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.5.v

Execute ‘Create
—p»{ Method Set'
Command

Execute Edit
}—- Method Set’
Command

Execute 'Copy
! Method Set’
Command

Execute 'Delete

—V‘ X > Method Set’

Command

Process Conrtract
——P» Data Sheet
Command

4

Choose Method
—31 Set to Show
Detail

6 |

4
Choose Method
| Set to Hide Detail’

7|

52

Display/Update

Browser

Figure 44. Decomposition of Execute Method Browser
Command

Figure 44 outlines the commands that can be executed from the

Method Set Browser. Figures
operations in greater detail.

Automated IDEF3 and IDEF4 Tool Design

45

through 50 describe these

Knowledge Based Systems, Inc.

X —pp Method Set e

53

Constraints:

« A Method Set can have only one contract data sheet, though
many contacts may be specified. The Create Contract Data Sheet
Command must ensure that the Method Set does not have an
existing data sheet.

« When a Method Set is deleted, any class/feature pairs that
specify a contract for the deleted method set should be
automatically updated.

Decomposition 1.v.1.v.5.v.1.v

Submit Method

K
Ceate Method Set Input Method Set Add Class/Routin
Set To Database p—9=

e feet>=1 Name ——»1 Pairs to Method
Set

4]

L | 2]
Figure 4S5. Decomposition of Execute Create Method Set
Command
Decomposition 1.v.1.v.5.v.1.v.3.v
Chqosc Class 10 F Choose Routine dd Class/Routine
Be in Pair L] of Class e o viahod Set I
JEl | P 3 |
]]
IDEF4 Screen #9 IDEF4 Screen #9
1X]
Figure 46. Decomposition of Add Class/Routine Pairs to
Method Set
Decompasition 1.v.1.v.5.v.2.v
Input Method Set
Choose Kind of Naxe =
E:hlnf.\demud e
1 1 _|
Choose Method Add Class/R Submst Method
—""Xi —ir Set to Edit —.-Hxif g:xsloMemnd ~i.———- Set To Damsbase |-
2 ll L lnSuly [T
IDEF4 Screen #7 Class/Routme
Pars From —
Method Set
3
Figure 47, Decomposition of Execute Edit Method Set
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems. Inc.

Decomposition 1.v.1.v.5.v.3.v

54

Figure 48.

Figure 49.

Decomposition 1.v.1.v.5.v.5.v

Figure 50.

Decomposition of Execute Copy

Command

Decomposition 1.v.1.v.5.v.4.v

F Choose Method Remove Method
Set to Delete ! Set From
Database
1 | 2 |

|

IDEF4 Screen #7

Method Set

EF F
Choose Method Ceate Method Set Input Method Set Copy Method Set Submit Method
Set 1o Copy —] Name | 0 to New | Set To Database
Method Set
1 Il lulySyly lylysSylu? 2 1 Ixlvsyl
IDEF4 Screen #7

Decomposition of Execute Delete Method Set

Decomposition of Process Contract Data Sheet
Command

Automated IDEF3 and IDEF4 Tool Design

Command
IDEF4 Screen #7 IDEF4 Screen #11
)G

Set To Add Create Contract Edit Contract Submit CDS 10
Contract Data Data Sheet and Data Sheer and Update MS [
Sheet To Atach to MS in Database

] P | 3 1 PR |

F) -

Choose Method Edit Contract Update Cantract
Set Whose CDS Data Sheet Data Sheet in
to Edit Database

b l IRBR A RRA] 8 I

P__._—- ey

Choose Method Set To Add Create Contract Copy Contracts
Set Whose CDS Contract Data Data Sheet and from Old CDS j—ri
1o Copy Sheet To Auach 1o MS 10 New CDS

Z | Ll loeSasal Ll acSausal £ |
Choose Method Remove CDS
Set Whose CDS From Databasc
o Delete

e 1 Yl |

Knowledge Based Systems, Inc.

[X]

Decomposition 1.v.1.v.6.v

Execute 'Create

- Feature'
Command

Execute 'Delete
! Feature'

Command

Execute 'Copy
X | Feature'
Command

Execute 'Edit
}—p»| Feature'
Command

Choose Feature to
—»| Show Detail

5 |

Choose Feature 1o
L__p»| Hide Detail

6 |

55

[Display/Update
Feature Browser

—»X—» e

Figure S51. Decomposition of Execute Feature Browser
Command

Figure 51 defines the commands that‘ would be available in the

Feature Pool Browser. Figures
operations in greater detail.

Automated IDEF3 and IDEF4 Tool Design

52

through 56 describe these

Knowledge Based Systems, Inc.

56

Constraints:

« When a feature is deleted, all classes that use the feature should
have the feature removed.

« When a feature is deleted from a specific class, that class, and
any classes that inherit from that class should be updated to
reflect the removal of the feature.

« When a feature is modified, all classes that have the feature,
either by direct ownership or through inheritance, should be
updated to reflect the modification.

IDEF4 Screen #9
Decomposition 1.v.1.v.6.v.l.v I
4
Choose Class to
1 Atach Feature 10
I Specify New
— X 1 I X | Feature
Figure 52. Decomposition of Execute Create Feature
Command
Specify New
Decomposition 1.v.1.v.6v.1.v.2v Type Link e
N Cem IR T B e R Tl X
1 PR] 1
Figure 53. Decomposition of Specify New Feature
Decomposition 1.v.1.v.6.v.2.v
Choose Feature 10 Remove Feature Remove Feature Remove Feature |___ g
—»{ Delete —a»} From Class ! From Subclasses -] From Database
] ll 2 | 3| 4 |
IDEF4 Screen #8
Figure 54. Decomposition of Execute Delete Feature
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

57

Decomposition 1.v.1.v.6.v.3

3
Choose Feature to Choose Class to Create Feature Copy Info to New Submit Feature to
s Copy ! Anach Feature (0 fofim! L] Feature |——| Database -
1ll Lylvévlyl L vy v, 2 3|

IDEF4 Screen #3

Figure S5S. Decomposition of Execute Copy Feature

Command
Put Feature in Accept User Update Feature in
Edit Window Inp‘:xclpto Feature Databasc
. Ly lyv.byv.ly2, v lvéxly2y3 2 l
Decomposition 1.v.1.v.6.v.4
Specify New
Type znk

Choose Feature to

Eas »[E_ Lvlv8vdyv3d _>[

L1

| Edit Type Link
IDEF4 Screen #8
lvlvB8vdvd
Remove Type

b Link From
Database

Ly. Ly 8yv4y10

Figure S6. Decomposition of Execute Edit Feature

Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.7.v

Execute Create
Inheritance

Diagram '
Command

Execute ‘Copy
Inheritance
Diagram'’
Command

Figure 57.

Execute 'Edit
Inheritance
Diagram’
Command

Execute 'Create
Inheritance Link'
Command

Execute 'Delete
Inheritance Link'
Command

Remove
Inheritance
Diagram from
Database

6 |

Choose
Inheritance
Diagram’

7|

IDEF4 Screen #9

58

1splay/Update
Inheritance

— X —» Diagram Mode [—%

g |

Decomposition of Execute Class Inheritance

Diagram Command

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

59

Figure 57 defines the operations that are available within the Class
Inheritance Diagram Facility. This diagram facility can be used in
two ways. The first is to use the diagram as a viewing facility of
class relationships that are defined in the Class Browser. The second
way is to use the diagram facility as the means to create classes and
to define relationships between those classes. Over the course of a
system design it is likely that the designer will use both methods.

Figures 58 through 63 define the Inheritance diagram operations in
greater detail. The constraints associated with these operations are
identical to the constraints that were specified for the Class Browser
procedures. The reason for this is that there is a great deal of
functional duplication between the two modes of operation.

Decomposition 1.v.1.v.7.v.l.v

F STbm
Create Input Inheritance Add Classes 1o Inheritance
———»{ Inheritance] Diagram Name |—{ Inheritance Diagram to e
Diagram Diagram Database
1| 2 | 4
Figure S58. Decomposition of Execute Create Inheritance
Diagram Command
Decomposition 1.v.1.v.7.v.1.v.3.v
Add Class to
fdd €
Dia::;'lme X
2 1
X
Figure 59. Decomposition of Add Classes to Inheritance
Diagram
Decomposition 1.v.1.v.7.v.2.v
" Submit
Create Input Inhentance Copy Inhernitance Inheritance
~——p| Inheritance] Diagram Name f—=ppi Diagramio New p—di= Diagramto |—%
Ly.LyZx.lvl IRARFARRW] | L lvZvliyd
Figure 60. Decomposition of Execute Copy Inheritance

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

60

Decomposition 1.v.1.v.7.v.3.v

Input Inheritance
- Diagram New
Name
Submit
Add Classes o Inheritance
X —p-| Inheritance - Diagramto |9
Diagram j Database
1y lxZulyd
Remove Class
Choose Class to from
b1 Remove L—3»1 [nheritance
Diagram
| 2]

Figure 61. Decomposition of Execute Edit Inheritance
Diagram Command

Decomposition 1.v.1.v.7.v.4.v

Choose i Choose Subclass Add Inheritance Add Link to
w—mgp{ Superclass] |——p{Relationship From jp—gw=] Inhcritance e
[Databasc Diagram
L1 2 1 3| P
IDEF4 Screen #1 IDEF4 Screen #1
Figure 62. Decomposition of Execute Create Inheritance

Link Command

Decomposition 1.v.1.v.7.v.5.v

Choose , Remove Link Remove Inheritance
—p»| Inheritance Link || from Inheritance —Relationship From [—#>
to Delete Diagram Database
;| 2 | 1|
IDEF4 Screen #1
Figure 63. Decomposition of Execute Delete Inheritance

Link Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

61

Decomposition 1.v.1.v.8.v

Execute 'Create
— Type-Diagram’
Command

Execute 'Edit
—1 Type-Diagram’
Comman

Execute 'Copy
—pp Type-Diagram'
Command

Display/Update

Execute 'Type 1 I

Link' Command

Execute 'Delete
——»- Type Diagram’
Comman

Choose
! Type-Diagram

IDEF4 Screen #9

Figure 64. Decomposition of Execute Type Diagram
Command

Figure 64 describes the operations available in the Type Diagram
Facility. As with the Inheritance diagrams, this diagram facility can

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

—— X ——»| Type-Diagram +—»

62

be used in two ways. The first is to use the diagram as a viewing
facility of feature type relationships that are defined in the Feature
Pool Browser. The second way is to use the diagram facility as the
means to create features, assign them to classes, and to define the
feature type relationships. Over the course of a system design it 1s
likely that the designer will use both methods.

Figures 65 through 71 describe the Type diagram operations in
greater detail.

Constraints:

« When a type link for a feature is deleted, all uses of that feature
should have their type links deleted, unless the feature has been
redefined in the subclass.

 When a type link for a feature is modified, all uses of that
feature should have their type links updated, unless the feature
has been redefined in the subclass.

« The deletion of a Type diagram should have no effect on the
type links of the class features appearing in that diagram. Only
the organizing structure of the diagram will be destroyed.

Decomposition 1.v.1.v.8.v.1.v

Create ETnput Add Classes to Submit
—p»| Type-Diagram [—its~] Tb?lpe-Diagram ——»- Type-Diagram Type-Diagramto [—8
ame Database
1 | 2 | 4 |
Figure 65. Decomposition of Execute Create Type

Diagram Command

Decomposition 1.v.1.v.8.v.1.v3.v

Add Class 10

Type-Diagram |

[X]

Figure 66. Decomposition of Add Classes to Type
Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

63

Decomposition 1.v.1.v.8.v.2.v

Input
—» Type-Diagram
New Name

1|

Add Classes to
—P X —p»| Type-Diagram — X —

Lyv lyulyvlwl

Remove Classes

—3p»| From
Type-Diagram
2 |
Figure 67. Decomposition of Execute Edit Type Diagram
Command
Decomposition 1.v.1.v.8.v.3.v
Create Copy Input Submit
——p»] Type-Diagram |—»{ Type-Diagram o Type-Diagram |—p»! Type-Diagramto [—
contents Name Database
Lyv.Lvlv.lyv.l 1 I 2 I Ly.lv8yv.lv4
Figure 68. Decomposition of Execute Copy Type Diagram
Command
Decomposition 1.v.1.v.8.vd.v
%o_lgys;embut %xxzx;\k'ew
1 l
mo:g&yre Edit Type Link
31 i I I
(I} : X
Choose Type Choose Auribuie Create Type Copy Info to New] Subrmt Type Link
Link to Copy To Type Link Type Link to Database et
s 1 Lvladudyd i1 7 1 g 1
3
Co Do Lok From ™
Database
g 1 o 1
Figure 69. Decomposition of Execute Type Link
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

64

Decomposition 1.v.1.v.8.v.4.v.2.v

Choose Class _ _
That Attribute Create Type Edit Type Link
»- Return Valueis —® Link — L
Composed of
1 | lLv.lv8v4vh Lv.lvi8vd4vd
Figure 70. Decomposition of Specify New Type Link

Decomposition 1.v.1.v.8.v.4.v.4v

Put Type Link in Accept User Submit Type Link
— Edit Window ——p»1 Changes to —=1 to Database —
Type Link
1| 2 | lv.lvRva4ve
Figure 71. Decomposition of Edit Type Link

Figure 72 defines the operations that would be available in the
Method Taxonomy Diagram facility. Figures 73 through 77 provide
the details for these operations.

Constraints:

+ Deletion of a Method Taxonomy diagram results in all taxonomic
links between methods sets being deleted as well.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.9.v

xecute 'Create
ethod Taxonomy

Command

xecute 'Copy
ethod Taxonomy'
ommand

Execute 'Edit
——»Method Taxonomy'
Command

65

Execute Method

——p»= Set Link
Command

[Remove Method
—»{Set Taxonomy from
[Database

S

Choose Method
| Taxonomy

l

IDEF4 Screen #9

Figure 72.

Automated IDEF3 and IDEF4 Tool Design

Diagram Command

Display/Update
MST Diagram

Decomposition of Execute Method Taxonomy

Knowledge Based Systems, Inc.

66

Decomposition 1.v.1.v.9.v.1.v

Submit Method
Set Taxonomy 10 e
Database

a |

Create Method Input Method Set Add Method Sets

—p»{ Set Taxonomy || Taxonomy Name |—p{ to Method Set
Taxonomy
1 |

Decomposition of Execute Create Method
Taxonomy Command

Figure 73.

Decomposition 1.v.1.v.9.v.lv.3v

K
Choose Method Add Method
— X;—» Setto Add to | Setto e X
Taxonomy Taxonomy
] Il 2 1
IDEF4 Screen #9

Decomposition of Add Method Sets to Method
Set Taxonomy

Figure 74.

Decomposition 1.v.1.v.9.v.2.v

Create MST

F Input MST Name

Copy MST info
to New MST

Submit New MST
10 Database

jvivOv.lv]

Lv.Ly9v.lyv?2

|

lv.lyv9v.ly

Figure 75.

Taxonomy Command

Automated IDEF3 and IDEF4 Tool Design

Decomposition of Execute Copy Method

Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.9.v.3.v

Figure 76.

Decomposition 1.v.].v.9.vd.v

Figure 77.

—

Rename
Method
Taxonomy

1|

Add Method Sets
to Taxonomy

lvlvO9v.livi

Remove Method
Sets from
Taxonomy

2|

67

Decomposition of Execute Edit Method
Taxonomy Command

Submit MST w0
Database

lyly9yivd

IDEF4 Screen #3 IDEF4 Screen #3
Choose Choose Add Method Set
Superclass] Subclass |] Link to
Method Sex Method Set Taxonomy
| 2 1 1]
th Method »{ R Method
00Se emove
Set Link 1o Deleze Set Link from
Taxonomy
i ll s 1
IDEF4 Screen #3

Decomposition of Execute Method Set Link
Command

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.10.v

Execute ‘Create
Client Diagram '
Command

Execute 'Copy
Client Diagram'
Command

Execute 'Add
Suppliers'
Command

Figure 78.

Execute 'Add
Clients'
Command

Execute Remove
Subordinating
Link' Command

Remove Client
Diagram from
Database

6 |

Choose Client
Diagram

7]

IDEF4 Screen #9

68

Display/Updaic
Client Diagram

Decomposition of Execute Client Diagram

Command

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

69

Figure 78 describes the operations that would be available in the
Client Diagram facility. Figures 79 through 85 provide more detail on
the execution of these procedures.

Constraints:
« Deleteion of a Client Diagram would result in the deletion of all
client relationships defined in that diagram.

Decomposition 1.v.1.v.10.v.1.v

Add Clients 0 Submit Client

Client Diagram

Create Client Choose Add Suppliers

=i Diagram] Class/Routine f—pp{ 10 Clicnt
Pair Diagram

_— >]
I

IDEF4 Screen #9

Database
5 |

Figure 79. Decomposition of Execute Create Client
Diagram Command

Decomposition 1.v.1.v.10.v.1.v.3.v

L |

Choose Add Supplier
—— X b1 Class/Routine }——1 to Client e X

Pair Diagram
iy l0sly 1

X [X

Figure 80. Decomposition of Add Suppliers to Client

Diagram
Decomposition 1.v.1.v.10.v.1.v.d.v

Choose Add Client to

| e] B X

lalal0nlu? 1 l

Diagram to .

—X X

Figure 81. Decomposition of Add Clients to Client
Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

70

Decomposition 1.v.1.v.10.v.2.v

Create Client Choose Copy Client Submit Client
—»1 Diagram —p»| Class/Routine | Diagram to New [——»] Diagramto ——-
Pair Diagram Database
Lv.lv10v 1yl Lv.lyl0v.iv2 l Lv.lyv 10y lv.S
Figure 82. Decomposition of Execute Copy Client
Diagram Command
Decomposition 1.v.1.v.10.v.3.v
Add Suppliers to Submit Client
—»| Client Diagram —®»{ Diagramto —
Database
lv.iviQv.lv?3 lv.lv.10v.1vS
Figure 83. Decomposition of Execute Add Suppliers
Command
Decomposition 1.v.1.v.10.v.4.v
Add Clients to Submit Client
—»| Client Diagram |—»{ Diagram to —
Database
lLv.lv.l0vlvd lv.lv.10v.1v.S
Figure 84. Decomposition of Execute Add Clients
Command
Decomposition 1.v.1.v.10.v.5.v Remove Supplicr
From Client
Diagram
Choose Link to Submit Client
—] Delete —1| X 2| —=[X || Diagram to e
Database
1 | Remove Client lululOyly
I from Client
Diagram
IDEF4 Screcn #4 N T
Figure 85. Decomposition of Execute Remove

Subordinating Link Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.11.v

Figure 86.

E—

Execute Create
Protocol
Diagram’
Command

Execute 'Edit
Protocol
Diagram'
Command

Execute 'Copy
Protocol'
Command

Delete Protocol

71

Display/Update

Protocol Diagram |——3»

From Database

4 |

Choose Protocol
Diagram

s |

IDEF4 Screen #9

6 |

Decomposition of Execute Protocol Diagram
Command

Figure 86 describes the operations defined for the manipulation of

Protocol diagrams.

on these operations.

Constraints:

Figures 87 through 89 provide additional details

« When a Protocol diagram is deleted, all arguments associated
with the feature’s protocol are also deleted.

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

Decomposition 1.v.1.v.11.v

—P X p Protocol'

Figure 87.

Execute Create
Protocol

——1 Diagram'

Command

Execute Edit
Protocol

—— Diagram'

Command

Execute 'Copy

Command

Delete Protocol

——pp» From Database

a2 |

Choose Protocol

——p»| Diagram

s |

IDEF4 Screen #9

72

Display/Update

— X }—»1 Protocol Diagram [—y»>

6 |

Decomposition of Execute Create Protocol
Diagram Command

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

73

Decomposition 1.v.1.v.1.v.2.v IDEF4 Screen IDEF4 Screen IDEF4 Screen
#10 #9 #10
Thoose Type
Create New Input Argument Choose Class Link btwn
Ar Name for Argument Al and
Type Class
11 21 | 4
Fo oo

Argument o Input Argument

Rename Name

s 1 iwlaulu2u?

=TT
IrCmose Choose Class me;o ;e‘wnype
ArgmnemT to for Argument Asgument and
Change Type Type
Llass Submit Protocol
I £ 1 AR RRWAK] Ly lylyvavd _»IIXI_. 10 Database e
y
Choose Argument Create New Input Argument Assign Argument R
w Copy Arg Name Type of Old —
Argument

2 I PEARARPAN Ly lylx 2yl 8 |

Choose Argument Choose New Repostion
=1 10 Move Position for Arguments
Argument

S I 10 l 11 l

Choose Argument
a4 10 Delew

[TH |

IDEF4 Screen #5

Figure 88. Decomposition of Execute Edit Protocol

Diagram Command

Decomposition 1.v.1.v.11.v.3.v

3 Create . .
Choose Appropriate Copy Appropriate Submit Protocol
—| Class/Feature Pair —#1 Protocol Diagram Info to New to Database i
to Copy to Protocol Diagram
1]_L lalyllvly? 2 [lyvleliylwd
IDEF4 Screen #9

Figure 89.

Decomposition of Execute Copy Protocol

Command

Figures 90 through 100 display potential screens that will exist
within the IDEF4 system and are the screens that are referenced
within the process descriptions. These screens are meant only to
give a rough idea of how the tool screens will appear. Figure 90

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

74

displays the Class Inheritance Diagram screen. Figure 91 displays
the Type Diagram screen. Figure 92 displays the Method Taxonomy
Diagram screen. Figure 93 displays the Client Diagram screen. Figure
94 displays the Protocol Diagram screen. Figure 95 displays the Class
Browser screen. Figure 96 displays the Method Set Browser screen.
Figure 97 displays the Feature Browser screen. Figure 98 displays
the Pick From List Pop-up window. Figure 99 displays the
Input/Edit Pop-up Window. Finally, Figure 100 displays the Generic
Text Edit Window.

Class Inheritance Diagram
Commands
Create !
————

Copy IDEF4 Element

Edit

Delete
? Feawre [Feature Uses 7 Root Class
? Type ? Class Invariance 7 Uses
@ Role ? Superclasses ?Default Type
”@C]l“ype Display Mode ? Subclasses @ Default Role
7 Class
? Method Set Class eature
Feature Use in Class

Command:

Figure 90. IDEF4 Screen 1 - Class Inheritance Diagram

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

75

Jype Diagrem
Commands ? In Link ENOde#:Imeger
2 Out Link 7 IDEF@ Ref. : Symbol
Create ? E:::"am‘? —L—
: : ? mpositions
Copy Linkable Object ? References : § Referent
Edit
Delete LOB
? COBs ~§p———i .
? Lir\ksS -y @ Type: Keyword
? Junctions == 30b;ect_s: QObject
? References —pp—- ?Front : 1
? Objects : HObject ?7Back:t
[Process Description |
{ Junction
Scenario B
Command:
Figure 91. IDEF4 Screen 2 - Type Diagram
Method Taxnomy Diagram
Create
Copy Any-method
Edit [Lock:sieze]
Delete
Seize -
[Simple-lock seize] Check-Icok-priority
[Ordered-lock-mixin seize]
Seize-if-priority-OK
{Ordered-lock:seize]
Commang:
Figure 92. IDEF4 Screen 3 - Method Taxonomy Diagram

Screen

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

76

Client Diagram
Commands — [Process: eneralized
imple-lock: -wait -variable:
Create Eheck-for-mylock processwat s:fr-‘f)
Copy
Edit
Delete
Simple-lock:
Seize
rint-request-q ni-reg-q. Lock
sy oy CK.
eng-prini-req. fife‘g‘m print with-lock
Command:

Figure 93.

IDEF4 Screen 4 - Client Diagram

Protocol Diagram

Commands

Create

Copy

Edit

Delete

Simple-lock Process
[self possibly-owned) (possible-owner

Commang:

Figure 94.

IDEF4 Screen 5 - Protocol Diagram

Automated IDEF3 and IDEF4 Tool Design

Knowledge Based Systems, Inc.

77

Commands

Create
Copy
Edit
Delete

IDEF4 Element
ID Mixin
@Name
@Label
Glossary Mixin
@Description
Feature Use in Class
(Glossary Mixin,IDEF4 Elemant)
?Feature
Type
@Role
@Type Display Mode
Class
?Method Set

Command:

Figure 95. IDEF4 Screen 6 - Class Browser
Method Set Browser

Commands MathodSet1

Create Class-Feature Pair A

Copy Class-Feature Pair B

Edit MethodSet2

Delete MethodSet3

Command:

Figure 96.

IDEF4 Screen 7

Automated IDEF3 and IDEF4 Tool Design

Method Set Browser

Knowledge Based Systems, Inc.

78

Feature Browset
commands ?Fe?garl?ure Use Class

Create ?Type
Copy Feature Use Class
Edit @Description
Delete Glossary Mixin

Class

Feature

Feature Use Class
Command:

Figure 97.

IDEF4 Screen 8 - Feature Browser

item One
item Two
tem Three
tem Four
item Five
Item Six

Figure 98.

IDEF4 Screen 9 - Pick From List Pop-up
Window

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

79

Generi¢ Edit Pop-Up Window
Name:
Selection: type 1 type 2 type 3
Value
0O Doit O cCancel
Figure 99. IDEF4 Screen 10 - Input/Edit Pop-up
Window
Generic Text Edit Window
XXAXXXKXXAXXXXXXXXX

XXXXXXXXXXXXXXXKXXXXXXXXXX XX XXX XXX XX XXX XXX
XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX XXX XXX XXXXXXKXXXXXXX
XXXXXXXXXXXXX XXX XX XXX

XXXXXXXXXXX XX XXX XXX XXX
XXXXXXXXXXX

XXXXXXXXXXX
XXXXXXXXXXX

Figure 100. IDEF4 Screen 11 - Generic Text Edit Window

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

80

5.0 Conclusion

This document has presented the current designs for the automated
IDEF3 and IDEF4 tools. It describes the philosophy behind the tool
designs as well as the conceptual view of the interacting components
of the two tools. Finally, it presents a detailed description of the
existing designs for the tools using IDEF3 process descriptions and
IDEF4 diagrams.

In the preparation of these designs, the IDEF3 and IDEF4
methodologies have been very effective in defining the structure and
operation of the tools. The experience in designing systems in this
fashion has been very valuable and will result in future systems
being designed in this fashion. However, the number of IDEF3 and
IDEF4 diagrams that were produced using a Macintosh for this
document attest to the need for an automated tool to simplify this
design process. An idea developed from the production of this
document is to possibly tie the IDEF3 and IDEF4 tools to life cycle
documentation generation systems. The result would be the
production of documents similar to this one without the tedious work
required to produce the diagrams.

Finally, as with any design, the designs of the IDEF3 and IDEF4 tools
presented here are subject to modification during the
implementation of the tool prototypes. However, it is hoped that the
use of IDEF3 and IDEF4 in the design process has resulted in the
development of stable designs that will require a minimal amount of
revision during implementation.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

